

Cloud Computing with Nimbus

February 2009

Kate Keahey

(keahey@mcs.anl.gov)

University of Chicago

Argonne National Laboratory

Cloud Computing

The Quest Begins

- Code complexity
- λ Resource control

8/25/2009

"Workspaces"

- λ Dynamically provisioned environments
 - Environment control
 - Resource control
- λ Implementations
 - Via leasing hardware platforms: reimaging, configuration management, dynamic accounts...
 - Via virtualization: VM deployment

Nimbus Overview

- A Goal: cloud computing for science
 - Open source, extensible laaS implementation
 - A platform for experimentation with features for scientific needs and interoperability
 - λ Set up private clouds (privacy, expense considerations)
 - λ Workspace Service
 - Orchestration tools
 - λ Focus on end-to-end picture
 - λ Context Broker, gateway
- λ http://workspace.globus.org/

The Workspace Service

The Workspace Service

Workspace Service Interfaces and Clients

- λ Web Services based
- λ Web Service Resource Framework (WSRF)
 - o GT-based
- λ Elastic Computing Cloud (EC2)
 - Supported: ec2-describe-images, ec2-run-instances, ec2describe-instances, ec2-terminate-instances, ec2-rebootinstances, ec2-add-keypair, ec2-delete-keypair
 - Unsupported: availability zones, security groups, elastic IP assignment, REST
- λ Used alongside WSRF interfaces
 - E.g., the University of Chicago cloud allows you to connect via the cloud client or via the EC2 client

Security

- λ GSI authentication and authorization
 - υ PKI credential required
 - Works with Grid proxies
 - vOMS, Shibboleth (via GridShib), custom PDPs
- λ Secure access to VMs
 - EC2 key generation or accessed from .ssh
- λ Validating images and image data
 - Collaboration with Vienna University of Technology
 - Paper: Descher et al., Retaining Data Control in Infrastructure Clouds

Networking

- λ Network configuration
 - External: public IPs or private IPs (via VPN)
 - Internal: private network via a local cluster network
- λ Each VM can specify multiple NICs mixing private and public networks (WSRF only)
 - E.g., cluster worker nodes on a private network, headnode on both public and private network

The Back Story

Workspace back-end:

Resource manager for a pool of physical nodes Deploys and manages Workspaces on the nodes

Each node must have a VMM (Xen) installed, as well as the workspace control program that manages individual nodes

Trusted Computing Base (TCB)

Workspace Components

Cloud Closure

The IaaS Gateway

Virtual Clusters

Tightly-coupled clusters

- λ What makes a cluster a cluster?
 - Shared trust/security context
 - Shared configuration/context information
- λ Reciprocal exchange of information: networking and security

Context Broker

- λ Parameterizable appliance
- λ Context information exchange

Context Broker Goals

- λ Can work with every appliance
 - Appliance schema, can be implemented in terms of many configuration systems
- λ Can work with every cloud provider
 - Simple and minimal conditions on generic context delivery
- λ Can work across multiple cloud providers, in a distributed environment

the globus alliance Status for Context Broker

Release history:

- In alpha testing since August '07
- First released summer July '08 (v 1.3.3)
- Latest update January '09 (v 2.2)
- λ Used to contextualize 100s of nodes for EC2 HEP STAR runs, Hadoop nodes, HEP Alice nodes...
- Contextualized images on workspace marketplace
- Working with rPath to make contextualization easier for the user
 - OVF extensions to be submitted to DMTF

End of Nimbus Tour

8/25/2009

Science Clouds Goals

- Make it easy for scientific projects to experiment with cloud computing
 - Can cloud computing be used for science?
- λ Evolve software in response to the needs of scientific projects
 - Start with EC2-like functionality and evolve to serve scientific projects: virtual clusters, diverse resource leases
 - Federating clouds: moving between cloud resources in academic and commercial space
- λ Provide a laboratory for exploration of cloud interoperability issues

Science Cloud Resources

- λ University of Chicago (Nimbus):
 - p first cloud, online since March 4th 2008
 - υ 16 nodes of UC TeraPort cluster, public IPs
- **λ** University of Florida
 - υ Online since 05/08
 - υ 16-32 nodes, access via VPN
- λ Other Science Clouds
 - Masaryk University, Brno, Czech Republic (08/08), Purdue (09/08)
 - υ Installations in progress: IU, Grid5K, Vrije, others
- λ Using EC2 for overflow
- λ Minimal governance model
- http://workspace.globus.org/clouds

Who Runs on Nimbus?

Hadoop over ManyClouds

- λ Building clouds on top of clouds
- λ Virtual workspace: ViNE router + application VMs
- λ Need access to distributed resources, and high level of privilege to run a ViNE router
- *λ Papers:*

the globus alliance

www.globus.org

- "Sky Computing", by K. Keahey, A. Matsunaga, M. Tsugawa, J. Fortes. Submitted to IEEE Internet Computing.
- "CloudBLAST: Combining MapReduce and Virtualization on Distributed Resources for Bioinformatics Applications" by A. Matsunaga, M. Tsugawa and J. Fortes. eScience 2008.

the globus alliance Alice HEP Experiment at **CERN**

Collaboration with CERNVM project (CHEP09 paper)

STAR

- λ STAR: a high-energy physics experiment
- λ Need resources with the right configuration
 - Complex environments
 - Consistent environments
- λ A virtual OSG STAR cluster
 - OSG cluster: OSG CE (headnode), gridmapfiles, host certificates, NSF, Torque, worker nodes: SL4 + STAR
- **λ** Requirements
 - One-click virtual cluster deployment
 - Science Clouds -> EC2
- λ From proof-of-concept to productions runs
- λ Work by Jerome Lauret, Doug Olson, Leve Hajdu, Lidia Didenko
 - Results to be published at Quark Matter conference and CHEP

Infrastructure Testing

- λ Motivation
 - Test middleware scalability, use of different platforms, etc.
- λ Workspaces
 - Globus 101 and several different environments
- λ Requirements
 - very short-term but flexible access to diverse platforms
- Work by various members of the Globus community (Tom Howe and John Bresnahan), short-lived "communities of one"
- λ Resulted in provisioning a private cloud for Globus

8/25/2009

Montage Workflows

- λ Evaluating a cloud from user's perspective
 - Paper: "Exploration of the Applicability of Cloud Computing to Large-Scale Scientific Workflows", C. Hoffa, T. Freeman, G. Mehta, E. Deelman, K. Keahey, SWBES08: Challenging Issues in Workflow Applications

Friends and Family

- λ Committers: Kate Keahey & Tim Freeman (ANL/UC), Ian Gable (UVIC)
- A lot of help from the community, see: http://workspace.globus.org/people.html
- λ Collaborations:
 - Cumulus: S3 implementation (Globus team)
 - EBS implementation with IU
 - Appliance management: rPath and Bcfg2 projects
 - Virtual network overlays: University of Florida
 - Security: Vienna University of Technology

the globus alliance

Nimbus Users

λ Applications users

- Scientific projects
- Use clouds, Nimbus client side, user guides

λ Cloud administrators

- Resource providers
- Install Nimbus, administrator guides

λ Communities extending Nimbus

- Extensions for research or usability
- Develop code, extensibility guides

8/25/2009

Open Source IaaS Implementations

λ OpenNebula

- Open source datacenter implementation
- University of Madrid, I. Llorente & team, 03/2008

λ Eucalyptus

- Open source implementation of EC2
- υ UCSB, R. Wolski & team, 06/2008

λ Cloud-enabled Nimrod-G

- Open source implementation of EC2
- Monash University, MeSsAGE Lab, 01/2009

λ Industry efforts

openQRM, Enomalism

Cloud Computing Ecosystem

Appliance Providers
marketplaces
commercial providers
communities (CERNVM)

Deployment Orchestrator orchestrate the deployment of environments across possibly many cloud providers

IaaS Clouds vs Grids

- λ Interfaces to resources in the cloud
- λ Significant new abstraction: provisioning resources and environments/configurations
 - Configuration control
 - υ Resource control, better articulated SLAs
- λ Revolution or evolution?
 - We can leverage much of the infrastructure developed in the context of grid computing
 - There is new potential to explore

Some Thoughts

- λ Cloud computing has an enormous potential for Science
- λ New roles: appliance providers
 - υ Or maybe not so new...
- λ Interoperability
 - Academic vs commercial resources
 - Standards: "rough consensus & working code"
- λ Importance of open source
 - Drive academic needs into the marketplace
 - Drive the development of standards
- λ End-2-end tools
 - Combine with what we have
 - Explore new potential

Acknowledgements

- λ NSF CSR "Virtual Playgrounds"
- λ NSF SDCI "Missing Links"
- λ DOE CEDPS proposal
- λ Various other collaborations with TeraGrid,OOI, and other communities