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model is applicable to other high consequence areas such as satellites, global security and other 
energy related areas.   
Digital twins (DTs) are real-time virtual renderings of the physical world. A primary capability 
offered by a DT is rapid access to - and communication around - data and information. With the 
high consequence complex systems within the national security enterprise, most teams are 
challenged to manage large volumes of technical documentation, often in multiple formats and 
duplicated throughout the organization, over multiple decades leading to fragmentation and 
degradation of information integrity. This leads to significant financial and safety risks during 
operations. DTs can help ensure that information is easy to find when it is needed as well as 
serving as a single source of truth that supports communication and collaboration by presenting 
information in context or data pedigree. An effective DT is based on the inherent data structure 
and governance that maintains the validity and accuracy of the twin. AI connects the digital and 
physical worlds transforming science and engineering. Enabling real-time virtual representations 
of the manufacturing process provides production teams with the ability to support faster, 
smarter, and more cost-effective decision making. Accurately captured models in AI can deepen 
manufacturers’ understanding of complex physical systems and production operations, optimize 
production scheduling, or simulate “what-if” scenarios to understand the impact of new product 
introductions, which are critical for responsive national security needs. 
AI connects the digital and the physical worlds transforming science and engineering. AI 
understood methods have the potential to revolutionize the formulation and use of DTs. For 
example, graphical models like dynamic Bayesian networks can be used to augment equations of 
physical systems to enable robust updates of DTs at scale [Kapteyn, 2021]. Similarly, AI models 
can be used to entirely replace physical system models in applications where either the physical 
system is poorly or where such models are not practical (e.g. modeling human behavior). E.g., 
Sandia has explored the use of process models and hidden Markov models as DTs to model and 
analyze human behavior in physical [SAND2023-14702, SAND2024-00219] and cyber systems 
[KTR-2024-003, SAND2023-06726C]. Many research questions remain concerning the use of 
AI models as DTs. For example: 

• How do we develop trustworthy AI models from sparse, noisy data sources? 
• How can domain information, including subject matter expertise, be effectively 

integrated into AI models? 
• How can AI models capture both statistical and logical relationships in physical systems? 

Machine-learning and AI will play an integral part in the successful construction of DTs. This 
need arises from two separate issues. DTs will need to be continuously calibrated to 
measurements streaming from the physical twin. Continuous data assimilation algorithms e.g., 
Ensemble Kalman Filters exist, but require the DT to execute quickly on a computer – but for 
complex systems, this is hardly feasible. Fast-running AI proxies of computationally expensive 
models will be necessary to make DTs a success; indeed, such DTs are already being used to 
design inertial confinement fusion targets [Wang et al, 2024] and could be used to design 
processes to allow fusion power generation. The second use arises from needing the DT to be of 
a fidelity sufficiently high such that it can successfully exploit and assimilate the information 
content in the continuous measurements of the DT. All DTs will likely contain 
phenomenological models / closures that are “curve fits” to historical data; they can (and should) 
be replaced by AI models trained on data from high-fidelity models that already exist (the 
feasibility of this process has been widely demonstrated [Duraisamy, 2021]). In many cases, a 
dense observation of the physical twin may be impossible (due to size/power/weight/accessibility 
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restrictions on the sensors), and it may be necessary to “fill in” the gaps in observational data, for 
visualization, interpretability, fast anomaly detection and classification of the observed 
phenomena and perhaps also for decision-making and control of the physical twin. “Filling in the 
blanks” (or conditional generation) is a prototypical generative AI problem, and efforts have 
already begun to address scientific problems via the construction of generative (or “super-
resolution”) models [Deng et al, 2019, Fukami et al, 2021] 
At Sandia, we have demonstrated that by using a machine learned anomaly detection approach, it 
is possible to detect voids and other defects in materials DT. This paves the way for future 
research in integrating materials DT with its physical counterpart. Detecting anomalies in 
fatigued and fractured experimental materials is an interesting yet challenging topic. The reasons 
are threefold. First, the anomalous microstructure feature that gives rise to structural failure is 
small, sometimes in the order of 10−7 of the interrogated volume. This, in turn, results in a highly 
imbalanced classification problem in machine learning (ML). Second, the consequence is high, 
in the sense that the test specimen is destructed in such case. Third, the convolution between 
microstructure stochasticity and the small probability of void nucleation, growth, and 
coalescence makes failure and fracture a hard-to-predict and challenging problem in materials 
science due to its irreproducibility, even experimentally. In [Tran, 2024] we developed a 
materials DT and applied anomaly detection methods to detect voids and anomaly in additive 
manufacturing (AM). The materials DT is driven by two integrated computational materials 
engineering (ICME) models, which are kinetic Monte Carlo (kMC) and crystal plasticity finite 
element method (CPFEM).  
Investigate Task Suitability and Sustainment of AI Tools: This action will involve locating 
potential case studies that examine the suitability of AI tools for use in DT application. The 
objective is to identify and gather information on real-world examples of AI applications, 
focusing on both successful and unsuccessful implementations. The objective is to distinguish 
operations currently identified as benefitting from AI augmentation from those that should 
remain under human control, considering factors such as complexity, ethical implications, 
decision-making requirements, and the potential for AI to enhance or detract from the task. 
Exercises will also be undertaken to evaluate hypothetical near-future operations and AI 
capabilities in the same manner. Through this investigation, a clear framework will be 
established to guide the desired use levels and roles of AI in supporting human operators. It aims 
to define the tasks that are appropriate for AI facilitation as determined by human systems 
researchers and the DoD and to highlight areas where the current limitations of AI technology 
and practical challenges make its application inadvisable. 
Develop Requirements for High-Consequence Human-AI Decision-Making: Extending the 
activities of #1, this proposed action will evaluate the tasks deemed suitable for AI use from a 
risk standpoint. These tasks will be assessed across the spectrum of error consequence severity. 
Our objective will be to more fully characterize how consequence severity should be accounted 
for in deciding when and how to utilize AI tools in DTs. We will use formal methods such as 
failure modes and effects analyses (FMEAs) and less formal “what-if” scenario case studies to 
explore the consequence gradient with respect to potential AI-assisted decision-making 
activities.   
Data: Encourage Adoption of Data Management Best Practices:  

Digitals Twins will likely be purely data-driven or hybrid (a combination of approximate physics 
models augmented with machine-learned corrections). This is because the DT will need to be 
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computationally efficient so that it can be kept calibrated to observations from the physical twin. 
This, in turn, implies that a DT will be associated with two data corpora – a training dataset (TD) 
for its machine-learned components and a calibration dataset (CD) gathered from the physical 
twin. Their (potentially real-time) integration with a DT demands new interoperability standards 
that enable seamless data exchange across models, systems, and platforms. 
Strategic challenges: There are enormous challenges in assembling the TD, as the data must be 
informative about the physical processes that are of concern to the physical twin (e.g., aging, 
failures, tampering/sabotage etc.) and can be observed via sensors. While one can generate the 
TD using high-fidelity models, there are no automated means to detect whether a proposed 
dataset has the correct physics, in the operational regimes of interest. There have been attempts 
to gauge the physics-content of TDs, but these efforts are in their infancy [Barone et al, 2022]; 
without a well-developed capability to do so, assembling TDs for realistic systems, especially for 
rare phenomena like failures (i.e., the data will be largely model-generated), seem to be 
infeasible. A second, but related challenge lies in making such datasets FAIR (Findable, 
Accessible, Interoperable and Reusable). Finding datasets implies being able to index them in 
some fashion, and to date, only textual (and perhaps pictorial) descriptions of a dataset can be 
indexed. For quantitative modeling purposes, these are insufficient; instead, one needs 
summaries of the dataset that not only provide the physics content of latent information in the 
TD, but also (summaries of) features of the data – spatiotemporal autocorrelations, coherent 
structures, etc., that can be checked for correctness and interpreted via the laws of physics. 
Prototypes [Bien et al, 2011], which are elements of the TD selected from physically 
interpretable clustering of the TD [Barone et al, 2022] are one way of summarizing a dataset in 
this fashion; reducing the dataset into a simplified, machine-learned dynamical system e.g., 
Universal Differential Equations [Rackauckas et al, 2020] is an another. These methods, rooted 
in machine-learning, are far from being mature, but are necessary for FAIR datasets. Integrating 
these representational techniques for TDs into a searchable storage system remains a distant 
vision. 
Tactical challenges: Before TDs can be assembled, they must be generated and contributed to a 
repository for checking, indexing, and archiving. This implies the need for massive fast storage 
in the computational centers where they are generated and where the DTs are learned. Cloud 
storage is sufficiently large but too slow to be coupled to supercomputing centers. In addition, a 
dataset, once accepted into a TD, needs to be described in text and “logged” into a metadata 
directory for easy perusal. There are efforts to design an appropriate scheme [Gebru et al, 2021] 
but it is debatable whether these schemata are complete for scientific TD. Further, there does not 
seem to be any effort to develop such summary textual descriptions for TD for DTs, let alone 
archive them and make them searchable. Such a capability would not be difficult to construct 
(i.e., would not require much research), but would need concerted (implementation) effort. 
Ecosystem: Establish a National Digital Twin R&D Ecosystem:  

To establish a National Digital Twin R&D Ecosystem, we recommend the following: 
• Encourage interagency (federal agencies, national labs, industry and academia) collaboration 

& task force to coordinate DT R&D efforts and organize regular interagency workshops and 
conferences to share progress, challenges, and best practices.  

• Identify the critical research gaps & fund interdisciplinary research projects that address these 
gaps, focusing on areas such as data integration, real-time analytics, and predictive modeling. 
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• Develop public-private consortia to collaborate on high-impact DT projects where industry 
and academia can collaborate on developing and testing DT solutions. 

• Develop and promote standards to ensure interoperability and scalability of DT systems. 
• Biomedical sciences: Develop DTs of (i) virtual patient model for better decision making / 

decision support system; (ii) monitor chronic disease to predict future conditions in advance 
and treat patient on time; (iii) surgical instruments and procedure to enhance preoperative 
planning and train surgeons, bio-surveillance to monitor public health; (iv) biological systems 
to simulate drug interactions, efficacy of drug, and identify side effects.   

• Common mathematical, statistical, and computational foundations: (i) develop a framework 
that support multiscale modeling (enabling the integration of models at different spatial and 
temporal scales); (ii) combine deterministic and stochastic modeling techniques to capture both 
predictable and random behaviors in complex systems; (iii) use Bayesian inference methods 
to update DT models in real-time based new data; (iv) deep learning techniques to create highly 
accurate and scalable DT models; (v) integrate cloud computing technologies with HPC 
resources to provide flexible, on-demand access to computational power.  

International: International Collaborations on Digital Twins:  

By bringing together expertise from different countries and sectors, these initiatives are driving 
innovation and setting the stage for the widespread adoption of DT technology across various 
domains. 
Digital Twin Consortium (https://www.digitaltwinconsortium.org/) 
An international consortium including companies including Microsoft, Dell, and GE Digital, 
along with academic and governmental organizations. The Digital Twin Consortium aims to 
accelerate the adoption of DT technology across industries by developing standards, guidelines, 
and best practices. The consortium includes members from around the world, fostering global 
collaboration and knowledge sharing. 
Horizon Europe Digital Twins (https://research-and-innovation.ec.europa.eu/funding/funding-
opportunities/funding-programmes-and-open-calls/horizon-europe_en) 
The European Union’s Horizon Europe Program is investing in multiple DT activities. These 
include ocean and earth models as well as models focused on infrastructure and manufacturing. 
The International Data Spaces Association (IDSA) (https://internationaldataspaces.org) 
IDSA includes members from various countries, including Germany, the USA, Japan, and 
others. IDSA develops standards and architectures for secure data exchange in DT applications, 
particularly in manufacturing and logistics. The association’s global membership fosters 
international collaboration on data standards and interoperability. 
Omniverse for Microelectronics Fabrication (https://resources.nvidia.com/en-us-industrial-
sector-resources-mc/en-us-industrial-sector-resources/gtc24-s62610?ncid=no-ncid) 
This is an industrial collaboration Nvidia, Siemens, TSMC, Samsung and others. Nvidia’s 
Omniverse capability for digital twinning is being specifically developed to support twins of 
microelectronics fabs. There is a potential for this to become a standardized tool within this 
space although there will be competing technologies. This is a capability that could be highly 
aligned with the CHIPS and Science Act as well as facilitating the incorporation of AI 
technologies through Nvidia’s other products. 
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Long Term: Identify Long Term Research Investments:  

The bidirectional flows of information required to build functional DTs require a commitment by 
all parties involved to incorporate a high degree of digital cooperation. The continuous 
integration and continuous deployment (CI/CD) technologies of software development (e.g. 
GitHub/GitLab/runners, etc.) are good examples of how such processes are currently developed 
and maintained. However, DTs require communication between many distinct software and data 
repositories with proper information protections in place that are both sufficiently secure but yet 
open to all appropriate entities and containing access to sufficient meta-data that automated 
processes can be built and maintained. A significant challenge to such a broad based and usable 
information environment is to provide overarching and broad-based data availability 
requirements so that the needed data and associated personnel expertise can realistically be 
supported. Combining experimental software and digital simulations requires a great degree of 
commitment to cross-disciplinary cooperation. 
From a research point of view the main challenges to the development of DTs are the inherent 
roadblocks arising from scientific and engineering funding structures and culture that are 
misaligned with the DT ecological viewpoint. Research should be funded to demonstrate specific 
instances of DT systems that bring together experimental and digital computing technologies and 
be required to show measurable benefits or failures so as to expose the essential issues needing 
improvement. Proposals that provide for delivery of multi-domain cross-cutting glue code that 
could be open sourced should be carefully considered. At this early stage working 
demonstrations of real systems that expose the essential requirements of DTs should be funded 
and the results presented as widely as possible. The development of systems and processes that 
enable easier maintenance and evolution are essential since the whole idea of a DT is a 
continuous monitoring and improvement. 
Rudimentary DTs (per the NITRD definition), with bi-directional coupling, already exist – a 
common example would be a model of an oil/gas reservoir that is kept calibrated to monitoring 
wells’ data and periodic seismic surveys and which are used to make decisions e.g., enhanced oil 
recovery, that significantly impact the nature and response of the physical twin. The primary 
challenge has been the steady improvement in the density, quality and modalities by which 
measurements of the physical twin are made, as they require a concomitant improvement in the 
sophistication of the model – one cannot assimilate measurements of a physical process unless it 
is included in the DT. It is never very clear which processes should be included in the model, and 
their inclusion invariably increases the computational cost and numerical pathologies of the 
model (including the embedding of machine-learned phenomenological models / closures for 
higher fidelity); despite these complexities, the DT must be subjected to sequential data 
assimilation / calibration to streaming observations. The continuously assimilation of multiscale 
measurements has been achieved, to some degree, in Earth system models, but employing a 
hierarchy of model of variable fidelities, but what this hierarchy may be for an arbitrary physical 
twin is unknown and has not been attempted. Successful sequential data assimilation will require 
robust calibration techniques that adapt to increasing complex models, or their hierarchies, and 
these simply do not exist today. 
Trustworthy: Realize Secure and Trustworthy Digital Twins:  

A key opportunity for DTs is that they can enable comprehensive analyses of security and cyber 
resilience that are not practical on the physical counterpart. Sandia has previously explored the 
use of process models as DTs to model and analyze activities in physical [SAND2023-14702, 
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SAND2024-00219] and cyber systems [KTR-2024-003]. A process model is a graphical or 
logical representation of an operational process or workflow, including events or activities that 
occur in the workflow, how they are executed, and their logical relationship to other activities 
and resources. Although there is a robust literature on the use of process models in both the 
business and engineering applications, many research questions remain concerning their use as 
DTs. For example: 

• How do we develop trustworthy process models from sparse, noisy data sources? 
• How can domain information, including subject matter expertise, be effectively 

integrated into process models? 
• How can process models capture both statistical and logical relationships in physical 

systems? 
Ongoing research at Sandia is starting to consider research questions like these (e.g. 
[SAND2023-06726C]). 
DTs seek to represent the behavior of complex cyber-physical systems, thereby inheriting the 
complexity of the systems themselves. Due to their nonlinearity and vast state spaces, 
establishing trust in DTs is generically very difficult, especially if they are constructed as 
monolithic, fully detailed models. R&D is needed to discover appropriate multi-fidelity 
modeling abstractions and decompositions that make DTs tractable and scalable for analysis and 
verification. 
Trustworthy DTs should ideally be the result of rigorous model-based engineering. That is, 
models should be constructed iteratively throughout the engineering process and be used to guide 
design for analyzability. This will improve robustness of both the DT and the system itself. It is 
much easier to establish trust when starting from simpler high-level models and incrementally 
refining them, in a way that generates mathematical evidence (such as formal verification) of 
their consistency and conformance. 
When the iterative engineering process is complete, the collection of these interrelated models 
constitutes a more useful DT for the system because it captures the decisions and reasoning that 
tie the system's components together, and tie the fully detailed behavior to the higher-level 
requirements and functional models. This allows particular questions about the system to be 
addressed using DT models of an appropriate scope and detail for the task, providing an 
improved basis for trust. 
VVUQ: Develop Rigorous Methods for Verification, Validation, and Uncertainty Quantification 
for Digital Twins:  

VVUQ represents a foundational commitment to quality and continuous improvement. This 
means that the DT ecosystems will be continuously changing, improving and evolving. A 
healthy VVUQ ethos should be expected and funded from the beginning, and embedded into all 
stages of the DT life cycle, e.g., following the ASME VVUQ Standards. 
Complex systems are ubiquitous across all of science and engineering and beyond. Historically, 
improving understanding of complex systems has involved building models of these systems and 
using these models to develop a simulation framework; that is, a virtual representation of the 
system. These simulation frameworks have evolved over the past decade into the concept of a 
DT [National Academies, 2023], which involves bridging the virtual system and the physical 
system it represents. The recent SIAM Report on the Future of Computational Science 
[Hendrickson, 2024] notes that while DTs present enormous opportunities, their development 
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faces great mathematical, statistical, and computational challenges. Models of complex systems 
are subject to a wide variety of sources of both epistemic and aleatory uncertainty that must be 
quantified to enable robust and informed decision making. The accurate prediction of the 
behavior of complex systems, utilizing DTs, are necessary to inform critical decisions that can 
enhance national security and/or avoid substantial human and financial losses. Moreover, risk 
assessment is needed to quantify the effect of uncertainties on the severity of predicted 
outcomes. Rational decision making requires robust, accurate, and computationally efficient 
methods that can compute quantitative metrics on actionable time scales.  
However, as noted in [National Academies, 2023], “verification, validation, and uncertainty 
quantification as essential tasks for the responsible development, implementation, monitoring, 
and sustainability of digital twins'', however, “a gap exists between the class of problems that has 
been considered in traditional modeling and simulation settings and the UQ problems that will 
arise for digital twins.'' Thus, the integration of robust metrics in decision making workflows 
faces several critical challenges. First, probabilities must be conditioned on available 
observational data. While numerous advances have been made in Bayesian inference to 
characterize epistemic uncertainty, far less attention has been paid to aleatoric uncertainty. 
Moreover, almost no attention has been given to conditioning both epistemic and aleatoric 
uncertainty on data in a unified framework. Second, quantifying metrics from the push-forward 
of posterior distributions is computationally demanding for existing methods that rely solely on 
high-fidelity simulations. Techniques such as Markov Chain Monte Carlo (MCMC) require 
numerous evaluations of the simulation model, which are often intractable even on leadership-
class computing resources. Third, there is a need for more efficient methodologies for optimal 
experimental design (OED) to guide data acquisition efforts that will optimally improve model 
parameter characterization and the subsequent reliability of the predictions made using the 
computational model. All of these challenges are amplified when models are parameterized by 
large numbers of uncertain variables and risk-assessment must be executed on actionable time-
scales. 
Addressing these challenges will require advances on multiple fronts and combining concepts 
from different fields. Enabling fast and credible predictions for decision making using models of 
complex systems requires the integration of state-of-the-art UQ methods and Scientific Machine 
Learning (SciML) approaches. SciML is well positioned to address the high-dimensionality of 
parameterizations and the computational cost of coupled models that currently limits the 
complete adoption of UQ in scientific workflows. To serve as the basis for decision-making, new 
AI/ML approaches must be developed that respect the data, respect the physics and their well-
developed numerical treatments, and be able to quantify the uncertainty in their outcomes.  
For DTs of complex systems to be truly useful, a holistic UQ framework that addresses both 
epistemic and aleatoric sources of uncertainty is required. Moreover, such a framework should 
be replete with computational diagnostics that allow for AI-enabled inferences and decision 
making in the presence of such uncertainties. Recent work indicates that leveraging information 
from a population of assets through the solution of an aleatoric stochastic inverse problem to 
build population-informed priors can significantly reduce the uncertainty in asset-specific 
Bayesian (epistemic) inferences [White, 2024]. 
AI system security capability (EXCALIBUR) provides methods to examine (attack and measure) 
the security of systems that use data-driven models. EXCALIBUR examines broader 
perspectives beyond the data-driven model and data focusing on (1) the reliability and robustness 
of the system and how it will behave in novel conditions, (2) the vulnerability of the system to 
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adversarial attacks, and (3) the vulnerability of the data driven model to being affected through 
cyber-means. EXCALIBUR bridges the gap between established capabilities in machine 
learning, adversarial machine learning, and cyber-security to focus on AI systems. We provide 
real-world insights and lessons learned through assessments on actual AI systems including a DT 
cyber defense technology for process modeling (PROM) that utilized subspace identification 
techniques to model dynamic behavior in industrial processes. With this “digital twin” of the 
physical industrial process plant, PROM can operate as a cyberphysical intrusion detection 
system to detect anomalous behavior. EXCALIBUR evaluated adversarial threats to this DT 
system and identified weaknesses that may be exploited to compromise system performance and 
trustworthiness. 
Workforce: Cultivate Workforce and Training to Advance Digital Twin R&D: 

Integration of AI and DTs in high consequence applications required a specialized workforce 
with a diverse set of skills. The skills can be broadly categorized into technical expertise, domain 
expertise, multi-disciplinary skills, and maturity involving awareness including soft skills such as 
communication. With regard to technical expertise AI and machine learning skills are required 
for developing the algorithms that drive the predictive and analytical capabilities of DTs. 
Individuals proficient in data analysis, model training and algorithm optimization will play a 
crucial role. Further staff will be required to efficiently handle large volumes of data processing, 
visualizing and managing simultaneously. Fundamental understand of the data structures and 
governance would be key to enable the workforce. Domain expertise would be addressed by 
industry specific experts with deep insights and knowledge of the specific high consequence 
fields such as nuclear deterrence (design and manufacturing) or global security or satellite 
systems. Individuals who understand the operational aspects of the complex systems being 
modeled; play a foundational role as they bring the physical connection to help validate the DT 
models. System engineers and project managers with multi-disciplinary skills who can take a 
holistic view of the entire system, ensuring that all aspects (hardware, software, data, and 
processes) work together effectively. Systems engineers play a crucial role in managing and 
maintaining a complex interconnected physical system which would apply to the DT model as 
well. Continuous learning and training for the workforce will enable to team to stay updated with 
the latest advancements which would be both on the job training as well as formal education. 
Staff supporting environments where workforce can experiment and learn about DT and AI 
systems without impacting critical path tasks adversely. Workforce knowledgeable in topics such 
as safety, security, and other regulations and guidelines as applied to DT and AI systems will be 
integrated into teams. 
Sandia’s FORGE ND program aims to revolutionize the onboarding and training process for new 
employees at Sandia National Labs by integrating artificial intelligence (AI), large language 
models (LLMs), and the digital environment into an apprenticeship-based learning model. This 
initiative addresses the lag time between theoretical knowledge and practical application, 
ensuring that new hires become productive more quickly and efficiently. 
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