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1 Introduction
Light sources and neutron sources play a key role in understanding the fundamental prop-
erties of complex matter at different time and length scales by capturing their structural
and electromagnetic dynamics. These scientific facilities rely on some of the most complex
machines humans build. For example, X-Ray Free Electron Lasers (XFELs) are driven by
particle accelerators and produce highly coherent light for detailed imaging of samples, and
their operation requires close integration of many subsystems: high-performance particle
accelerators, sensitive magnetic undulators to produce X-rays, high-power X-ray optics, and
sophisticated detectors and complex sample environments (e.g. synchronized pumping with
ultrafast lasers). Comprehensively exploiting the capabilities of light sources and beamlines
can lead to new scientific discoveries in a wide range of fields, such as biology, chemistry,
physics, and material science. Increasingly more complex instruments and light source ca-
pabilities can enable unprecedented measurements to unravel the fundamental properties of
matter. However, the scarcity of neutron and light sources relative to the large experimental
demands leads to a shortage of allocated beam times. Consequently, there is a pressing need
to develop real-time data analysis and experimental guiding capabilities in order to make
efficient use of limited experimental time and maximize the scientific value of the collected
data. Additionally, there is a need to reduce the large amount of time that is currently spent
setting up facilities for delivery to different experiments.

Experiments at light sources can benefit greatly from digital twin (DT) technology,
which can leverage prior measurements, known parameters, and theory to guide sampling
strategies during an experiment and to produce unique scientific insights. DTs will be critical
for streamlining operation of user facilities, which involves complex system control. Light
sources are also ideal test beds for the development and deployment of DT technology. They
are highly dynamic systems with many deliberate and unintended changes in conditions
over time, they are made of multiple complex interacting sub-systems that need to oper-
ate in concert for optimal performance, they have physics simulations that can be readily
leveraged and fused with measured data, they provide a more contained environment in
which to explore DT concepts than many other applications (in contrast, for example, to
DTs of global climate), and there are many light sources worldwide with shared designs,
enabling the exploration of technology that is easily interoperable and exchangeable across
systems. Experience with such test beds will be critical for developing reliable, sustainable,
interoperable DT infrastructure that can be used across the numerous application areas of
US national interest (climate, energy grid, etc.).

A prominent example of a complex light source is the one-of-a-kind, high repetition rate
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1-MHz LCLS-II, which opens a new era for XFEL science and technology. This new super-
conducting linear accelerator will be delivering photons at unprecedentedly high repetition
rate and brightness, with ultrafast time-resolutions to unravel new physical phenomena.
The LCLS-II exploits complex instrumentation capabilities to enable unprecedented scien-
tific measurements. To make full use of these capabilities, at SLAC we have begun developing
and deploying parts of a facility DT ecosystem and identifying areas of urgent need for cur-
rent and future R&D. In this response to the NSF request for information [1], we outline
challenges for operation of light sources, the role DTs could play in improving operation of
light sources and promoting scientific discovery, and R&D needs to bring DT technology to
fruition for these systems.

1.1 Challenges and Needs for Operation of Light Sources
Many challenges complicate operation of a light source, including the high dimensionality of
available settings and input parameters, numerous sources of uncertainty, and nonlinearity of
system responses. These can make it extremely challenging to fulfill specific beam parameter
requests within required tolerances for different applications. User experiments also require
different experimental parameters (e.g., x-ray parameters, different samples, different acqui-
sition and analysis modes) that need to be delivered on-demand. Because meeting these
needs typically requires laborious hand-tuning by expert human operators, the range and
number of science experiments that can be performed is significantly reduced. This is both
due to the time it takes to set up individual experiments and the challenges in achieving and
maintaining the required beam quality. Time-varying changes in the facility conditions (e.g.
initial beam characteristics, RF cavity phase calibrations, ambient temperature) complicate
the task further.

An increasing suite of experiments also require precise dynamic control over the beam
during an experiment. For example, X-ray correlation spectroscopy requires the separation
between two electron bunches to be smoothly scanned, which is highly challenging and ne-
cessitates joint tuning on accelerator and photon beamline settings to achieve extremely
delicate final beam parameters. The demanding level of fine control required by new exper-
iments requires monitoring and adjustment of settings across the entire facility to carefully
control the beam evolution from the beam source to the experimental area. Finally, although
physics simulations can aid experiment planning and operation, these are also challenging
to construct in ways that provide sufficient accuracy relative to the real machine behavior,
due to the many nonlinear phenomena and the high dimensionality of these systems (for
example, LCLS-II at SLAC will have over 2M variables to monitor). Despite many advances
in automated tuning based on artificial intelligence and machine learning (AIML), the ma-
jority of adjustments, complicated diagnostic analysis, and assessment of machine behavior
still require human operators.

Another aspect of operation is “experiment steering,” in which information relevant to
the final science outcomes is provided on-the-fly during an experiment and used to suggest
next steps in the experiment (e.g. new beam conditions to examine for a particular sample).
These approaches can provide insight into how best to maximize information gain for a given
experiment. This requires, for example, fitting of many physically relevant model param-
eters and determining which are most likely given the data. Techniques such as Bayesian
Optimal Experiment Design (BOED) can then be used to suggest experimental inputs that
would further reduce possible model uncertainty and aid better determination of the physics
model. This process requires sophisticated analysis of user experiments (including both diag-

2



Figure 1: Layout of the LCLS accelerator and X-ray Free Electron Laser (XFEL), which de-
livers photon beams to myriad scientific users in biology, molecular dynamics, drug discovery,
and chemistry. An outline of desired end-to-end alignment spanning from the accelerator
to XFEL and scientific user experiments. Schematic diagrams of (a, b) the accelerator and
associated DT and ML-based control infrastructure under development. (c) The x-ray free
electron laser that delivers photons to different beamlines for user experiments, including gas
phase, liquid, material, biological science. (d) Desired DT model and framework for an LCLS
beamline and instrument. The flow chart describes the needs and challenges, including (i)
framework for timely data and model transfer across data generating and data processing
DOE facilities, (ii) large area detector image encoding, (iii) accurate and trustworthy differ-
entiable simulators, (iv) leveraging information flow from sample parameters to instrument
parameters for actionable experiment steering. (f) Scientific outcomes of experiments, which
will directly benefit from developed end-to-end DTs and machine learning models.

nostic data processing and inclusion into physics modeling/analysis) to be tightly integrated
with the optimization of (at minimum) the photon beamline setup. Incorporation of this
information into start-to-end DTs to aid joint accelerator optimization and control, photon
beamline optimization and control, and experiment analysis, would greatly reduce overall
time-to-science, improve efficiency, and aid discovery.

Overall, there is an urgent need to decrease the overall time-to-science, ensure sufficiently
high beam quality can be achieved and stably maintained for experiments, and enable new
capabilities such as dynamic control over the beam. Coupled to this, there is a need to
integrate on-the-fly analysis of user experiments to feed back into the direction of a given
user experiment.

1.2 Role of Digital Twins in Meeting Light Source Needs
Accurate fast-to-execute system models that are kept updated as the light source enters new
regions of parameter space could substantially improve online monitoring and control of the
facility, as well as aid the ability to infer structures and molecular dynamics directly from the
data, achieving the demanding performance for experiments that will fuel future discovery.
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We take a DT to be a data-informed digital model of a complex physical system in all its
aspects [2] that tracks the real inputs to the system and provides feedback to the system. As
the RFI notes, the two-way interaction is a key element of a DT. They may leverage both
physics information and artificial intelligence / machine learning (AI/ML).

In particle accelerators and light sources, a facility DT can be used to provide insight
into global machine behavior during operation (including to identifying anomalous behavior
and prompt faster intervention), provide estimates of beam behavior that are not able to be
observed at sufficient speed or resolution with conventional methods (i.e. virtual diagnos-
tics), be used directly in online model-informed optimization and control, and be leveraged
in experiment steering. This includes optimization for experiment setup, continuous control
for stable delivery and correction of unintended time-varying changes, and integration of
live feedback from the scientific output of user experiments. Note that in addition, a DT
can be copied at a certain point in time and used offline for experiment planning, design
of new diagnostics or beam manipulation hardware, and prototyping of software and algo-
rithms for analysis and control. Aside from a DT of the facility, a DT can also span the
interaction between the incoming beam, a particular physical/material process under study
(including unknown physics parameters), and measurement devices. DTs and ML models
can also enable extraction of scientific understanding from new measurements. Combined
with accelerated and parallel computation on GPUs, this can enable live-analysis to steer
experiments and data collection. By linking facility DTs to DTs for specific experiments,
active feedback to both the next steps in the experiment and to the facility controls can be
linked to enable highly-efficient, precise experiment guiding.

SLAC has been developing and deploying technology to enable DTs of LCLS instru-
ments, the LCLS-II accelerator, and other particle accelerators it stewards (e.g. FACET-II,
MeV-UED, SSRL). These efforts span improvements in the speed of execution of physics
models through the use of AI/ML, improvements to the overall accuracy of system models
through coupling physics simulations and data, incorporation of deployed system models
into improved online optimization of machine setup, development of software infrastructure
and workflows for deployment of DTs and feedback control, and approaches for streaming
ML-ready data. Work has also been ongoing to integrate new analysis techniques, including
based on ML, into fast analysis of user data to aid experiment steering. Below we briefly de-
scribe several current and future applications and areas of need for DTs at LCLS-II, including
open challenges.
1.2.1 Current Examples and Future Use Cases for LCLS-II
Accelerator Operation: As one example, open-source software developed at SLAC has en-
abled substantially easier construction of start-to-end simulations that use different physics
codes for different parts of the accelerator [3, 4]. These tools are highly inter-operable and
have, for example, been used with minimal additional effort to run online physics simulations
for the LCLS-II injector and the FACET-II injector. These online physics simulations were
used during LCLS-II injector commissioning to aid the intuition of physicists in the control
room, which when coupled with automated tuning reached the highest beam quality (mea-
sured in terms of the beam emittance) then seen during commissioning. This infrastructure
has now been expanded to start-to-end simulations of the accelerator and deployment on
the local HPC cluster (the S3DF) using tools such as Prefect and Kubernetes. This enables
physics simulations with relatively high fidelity to be computed based on live input in min-
utes for quasi real-time information in the control room. Surrogate models based on ML
enable even greater execution speed. These models have then been used to provide priors to
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Bayesian optimization and similar approaches to more efficiently tune the accelerator (e.g.
see [5], and [6] for a survey of techniques). Substantial software development and infrastruc-
ture is still needed to develop and deploy the system for true facility-scale prediction and
control.
Tuning of Complex Photon Instruments and Beamlines: Relevant challenges for
XFELs and ultrafast lasers includes stochastic characteristics of input laser and x-ray pa-
rameters, constantly changing sample environment, massive data rates and quantity (∼
TeraBytes), live-analysis, and fast feedback for experiment steering. Hence, accelerated
computing and computation are required to extract scientific understanding on a reasonable
timeline. Trained DTs can enable pre-alignment, optimization of crucial parameters, and
auto-alignment during beam times to maintain optical conditions. Efficient and live analy-
ses of the massive incoming data become crucial for steering relevant experiments and data
collection. We have been developing DTs for the split and delay, ToF-MM, cyo-EM, and
will expand to other complex spectrometers, the RIXS endstation, and the LCLS-II/-HE
beamlines.
Split and Delay Lines: Particular challenges include the tuning and control of complex pho-
ton optics in a beamline, which consists of perfect crystals to focus and redirect beams. X-ray
beams are sensitive to nanoradian-scale mirror misalignments and picometer-scale thermal
deformation of crystal optics. The very narrow and highly non-linear acceptance of X-ray
optics (especially diffractive single crystal optics), make for isolated, sharp optima in in
otherwise vast and mostly featureless search space. As state-of-the-art light sources such as
XFELs mature, the complexity of X-ray optical schemes tends to increase to push the bound-
aries of beam characteristics for enabling new scientific directions. Examples include split
and delay systems that enable X-ray pump/X-ray probe and X-ray probe-probe measure-
ments, tunable high resolution monochromators, nanofocusing/nanoimaging systems, pulse
shapers, etc, some of which already exist and others that are under development. There are
typically > 10 critical motion degrees of freedom for most of these optical system. Extreme
sensitivity to changes in thermal loading from absorbed beam power, frequently deforms the
system significantly from ideality, making tuning and drift correction by a human operator
very challenging if not impossible.
RIXS and Momentum Microscope: The resonant inelastic X-ray scattering (RIXS) and time-
of-flight momentum microscopy (ToF-MM) instruments/ end-stations are currently being
commissioned and offered to the scientific communities. Developing DTs and ML models
can tackle these challenges with the ongoing advancements and innovation on the instrumen-
tation and beamline frontiers. For example, the end-to-end ML model will enable real-time
optimization of electron optics to minimize time to alignment and optimization of ToF-MM,
which is a momentum imaging electron spectrometer, while incorporating feedback from a
DT of the detector systems to increase the feasibility of studying complex matter. ToF-MM
consists of 500+ tuning parameters to enable direct momentum or spatial imaging to compre-
hensively capture the properties of matter. The vast parameter space presents a prohibitively
difficult optimization problem during limited time during beam times for complex targets.
Automated tuning leveraging a DT could help gather data to further develop analysis of new
classes of materials and molecules via photo-induced processes, such as phase change, band
transitions, electron-phonon coupling dynamics, and photoinduced isomerization.
Photon Experiment Steering: Analysis of imaging experiments typically entails solving ill-
posed inverse problems through iterative methods that cycle through estimating parameters
of a forward model mimicking the experiment and updating of the sample of interest. Tra-
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ditional approaches to the first step suffer from lack of scalability to large datasets while
the second step often imposes limits on the complexity of the models used to describe the
experiment. Hence, researchers at SLAC have explored the ability of these generative mod-
eling strategies to perform single shot ab initio processing of unfiltered cryoEM datasets,
freeing the analysis process of typically tedious and error prone manual intervention, and
the ability to tackle heterogeneous datasets that resisted traditional solvers and allowed the
discovery of new sample states [7]. They demonstrated a general framework (Fig 1. d.) that
can accommodate different representations of the sample and its dynamics by representing
them directly at the atomic level [8–10]. They then successfully applied this model to X-ray
coherent diffraction images of isolated particles [11]and are actively working on mapping the
framework to all the imaging modalities encountered at LCLS, including ptychography [12],
inelastic scattering [13] or crystallography.

2 Needs and Challenges in Digital Twin Technology for Light
Sources and Neutron Sources

While substantial progress has been made toward development and deployment of DTs for
light source facilities and experiments, much work remains to see DTs brought to fruition
and put into day-to-day use, especially at the scale of an entire facility. This ranges from
fundamental improvements in AI/ML techniques for modeling and analysis, to the need for
reliable software ecosystems for deployment of DTs and handling of streaming facility data,
to improved physics modeling, to integration with high performance computing (both local
systems and the larger DOE HPC ecosystem). We describe these needs in further detail
below, loosely following the structure of topics listed in the request for information.

2.1 AI and Digital Twins
AI/ML for Facility System Models and User Experiments: A major challenge in
light source facilities and accelerators is the ability to obtain physics models with sufficient
accuracy and execution speed to be leveraged in live prediction and control. The as-built
system often differs from design due to numerous compounding sources of error and non-
idealities that are typically not included in physics simulations (including time-varying be-
havior). Physics simulations are computationally expensive (e.g. it can take many minutes
to hours for a single simulation). ML models can aid automatic determination of likely er-
ror sources (and associated uncertainties), even for high-dimensional systems; they can also
serve as fast-executing surrogate models for physics simulations. In cases where no physics
simulation is available, ML models can be trained on empirical data.

However, there are challenges in reliably using ML for modeling these systems. The
time-varying nature means they are both deliberately and unintentionally brought outside
of the statistical distribution of the training data, prompting a need for more generalizable
modeling methods, improved uncertainty quantification, and the ability to adapt to changes
over time (see “continual learning” below). These systems are also very high-dimensional,
which in and of itself can be challenging for ML modeling. Further, because a major aim is
to use ML system models in online experiment steering and control, it is desirable to have
some interpretability in the model.

Light source facilities are also simultaneously data-rich and data-poor: there is usually
extensive archived facility and user data, but it can be spread across many different distinct
operating modes in ways that are not conducive to easily learning global system models.
Physics simulations can be run on HPC systems, but are computationally expensive in ways
that limit the ability to make sufficiently large data sets (e.g. tens of thousands of samples).
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There is a need for sample-efficient methods for driving data gathering in simulation and
measurement, as well as techniques for sorting through and cleaning large amounts of archive
data (which may include ML-based approaches to data clustering and tagging).
Physics Informed ML and Differentiable Physics: Various approaches are being in-
vestigated to combine ML models and physics information to improve the sample-efficiency,
generalizability, and interpretability of learned models. For example, multi-fidelity modeling
can capture information from multiple different types of models (coarse analytic representa-
tions, detailed numerical physics simulations) and different data sources (e.g. slower detailed
diagnostics and faster coarser or noisier diagnostics). Differentiable physics simulations can
also be coupled to ML components to enable learning of high-dimensional unknowns in a
way that is highly constrained against the physics (e.g. see [14, 15]).

Unfortunately, differentiable physics simulations are challenging to produce. Automatic
differentiation (AD) systems are ubiquitous for training traditional AI/ML systems; how-
ever, the complexity of physical models can require reaching beyond this typical scope of AD
systems. For example, some challenges require novel R&D for their use in differentiable sim-
ulators, such as the presence of discontinuities in physical models, especially discontinuities
that depend on the parameters of interest, and require the development of novel methods for
differentiation. Several strategies are in development for such challenges, such as smoothing,
relaxing, or adding randomized perturbations to such systems, to enable differentiation [16–
19]. Further R&D on differentiable simulations will greatly expand the our capabilities to
develop accurate and more robust differentiable simulations for scientific facilities.
Continual Learning: As ML models are used on data that is outside of the statistical
distribution of the training data, they become less accurate in their predictions. A major
challenge is thus keeping these models updated over time and quantifying uncertainties in
their predictions, alongside trying to develop methods for improved generalization to unseen
conditions. For an accelerator setup, this could be due to putting the accelerator in a
fundamentally different configuration of settings to enable new beam parameters, or due
to slow unintended drift in parameters. The challenges are even more acute for photon
beamlines, which are frequently reconfigured for different experiments and examine an ever-
changing variety of different types of samples. Software infrastructure to support continual
learning is needed in addition to fundamental AI/ML approaches. Constraining learning
with physics information can help aid continual learning, as could the development of larger,
more comprehensive community data sets, leading toward foundation models. Overall, this
is a large area of need for R&D.
AI/ML on the Edge: The re-programmability of emerging EdgeAI accelerators makes it
possible to deploy a custom ML inference model for each detector and experiment, and even
for individual shifts. This flexibility allows EdgeAI accelerators to deliver actionable infor-
mation within minutes of source or target conditions changing during active experiments.
FPGA and edge devices, however, have severe resource constraints that limit the number of
parameters to the order of tens of thousands (in contrast to millions of parameters). The
resources available at the edge are also limited in terms of I/O and memory. Developing a
methodology to take offline-developed algorithms and adapt them to the constraints of the
ASIC or FPGA environment and the streaming environment will be important if DTs are
deployed in this hardware. Readout of high rate instruments may also be distributed; any
given ASIC/FPGA may only see a fraction of the data, so algorithms must adapt to this
distributed data environment. This is a major area of needed R&D.

7



2.2 Adoption of Data and Model Management Best Practices
ML-Ready Data and Data Cleaning: The BES light sources and neutron sources could
generate thousands of petabytes of data per year[20]. DTs have the potential to transform
experiment operations at these facilities and significantly reduce the time to science. This
will only be possible, however, if BES leverages the totality of the acquired and simulated
data and provides resources to ensure the data are FAIR. This includes the acquisition and
central registry of data and metadata, curation and access to high-value datasets, the ability
to search through the data for key characteristics, and the capture of provenance and context.
Tools will need to be built to enable the registry, indexing, and availability of these large and
multi-modal datasets. Likewise, the AI/ML products generated also need to be curated, the
provenance and context recorded, and the models rendered easily findable by users. In many
cases, preparing the data for ingestion to a DT or AI/ML model is vital and time-consuming;
data preparation could include reformatting the data, eliminating outliers and missing data,
and ensuring that the metadata provided are accurate and have appropriate units.
On-the-fly Data Analysis, Data Logging: Information about the performance of the
DT on data in-flight is vital to validate the performance of the DT, train new DTs, and
for doing error analysis. A DT is never just one piece of code running in isolation, but a
collection of codes running in, potentially, geographically separated environments. We must
maintain the ability to benchmark the performance of the end-to-end system and log the
results of each individual job.
Data Movement: At LCLS-II data rates and data volumes, required computational re-
sources will scale to hundreds of GPUs. These resources are not locally available, so LCLS
will be looking to the DOE Leadership Class Facilities for training. Once the data moves
outside of the local lab, and in fact, even when the data must move through local networks
within a lab, data movement is a key concern. New methods for doing parallel data transfer
on tens to hundreds of files while they are being written will need to be developed in order
to accommodate the models and use cases that we are envisioning. Data movement also
requires some certainty that data integrity is maintained, the ability to buffer data when
there are bottlenecks along the path, and the ability to do data transfer seamlessly with
little human intervention. Low latency networking at Tb/s is needed to keep pace with the
expected data rate from LCLS in 2028.
Best Practices for Handling of Scientific User Data in Light Source Facilities: In
BES, user data belongs to the user. Although individual user groups may extract science
from their own data, the scientific community is missing an opportunity to fully leverage the
overall data sets for the national good. Collective use of datasets to train DTs will enable a
host of experiments, especially as DTs become more sophisticated and adaptable/tunable to
new circumstances. However, if data are used to train a common model for the good of all,
then there is an additional burden on the trainers and maintainers of that model to publish
which data was used for the training and to define appropriate constraints on the use cases
for that model. The facility should be able to use data to provide generic algorithms for
the general good. The data generated by the BES user facilities is a national resource and
models and DTs developed from these data are powerful tools that should also be useable
across user facilities. Such data use will significantly enhance facility performance, but data
provenance and use will need to be tracked through the system. In a national environment
where DTs and models are reused at different facilities, it will become necessary to develop a
methodology to understand the applicability of a model to an environment or experiment, or
to develop a workflow for rapidly adapting/retraining a model to the new modality. Policy
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changes coupled to infrastructure improvements will be necessary to make DOE data and
models a national resource, available to all with a clear understanding of how to use and
adapt models to new modalities. DTs also cannot be a black box to the users. Users
must have the ability to validate the performance of the DTs against their specific use case.
Without some ability to verify the performance in real time during an experiment, users will
be reluctant to use tools provided by the facility no matter how well documented and vetted.

2.3 Software Ecosystems and Computing Infrastructure
For successful deployment, we need to have a robust data path (maintain integrity, low
latency, high throughput, with a low-touch interface), the ability to deploy code on remote
HPC (many different architectures, environments, and local policy implementations), the
ability to control/messaging pathways between distributed infrastructures, and workflow
orchestration tools to allow users to deploy desired DTs with the desired parameters (adapted
to the data/situation), parallelization, and ability to scale to HPC.

Another aspect is visualization and user interfaces. Even in a fully-autonomous DT
environment, it is vital to monitor data analysis progress and measurement results as well
as the recommendations from autonomous data analysis during experiments. Depending on
the specific aspects of the experiment, it may be advantageous to incorporate a human in the
loop, enhancing human insight with autonomously generated information. Development of
tools that allow users to monitor status and interact with live data as its being produced to
understand the performance of the data pipeline will be necessary to assist in the trustworthy
deployment of such models. Similarly, for facility control, human operators typically need to
monitor and interpret numerous signals streaming from the facility; having visualization tools
coupled to a DT will be essential for aiding monitoring and diagnosis of operational issues,
as well as aid decision making for improving or maintaining beam quality being delivered to
experiments.

It also essential to develop software ecosystems that can be used across different facilities.
For example, accelerator systems (even beyond light source use-cases) share many similar
component designs, control challenges, and types of diagnostics. Photon science experiments
and beamlines similarly share many characteristics and types of diagnostics. The establish-
ment of a multi-facility framework and/or modular ecosystem of tools that can handle fast
data analysis, autonomous experiment steering, and facility monitoring and control is crucial
for supporting advanced research.

Computing systems are important to facility operation, data interpretation, and scientific
productivity. DTs require computing to run simulations, to analyze experiments, to train
new models, to retrain or adapt existing models to new modalities, and coordinate end-to-end
workflow execution. As LCLS-II and subsequent upgrades ramp up, the computing needs will
exceed available local resources. LCLS plans to make use of DOE Leadership Class Facilities
such as NERSC for all aspects of DT workflows. Analyzing data and retraining/adapting
models on experimental timescales will require a data path of sufficient bandwidth and
integrity, tools for automated network orchestration, as well as the ability to deploy complex
workflows deployed across local edge, including ASIC, FPGA and other AI/ML accelerator
resources, local compute, and remote HPC resources. Workflow orchestration tools are
needed to automate data movement, analysis tasks, and control algorithms to translate
actionable information to directives used to steer the accelerator, experiment, or beamline
based on the results derived from DTs executing elsewhere.

Seamless connection to Leadership Class Facilities will be vital to successful deployment
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of DTs at the light sources. The High Performance Data Facility (HPDF) and Integrated
Research Infrastructure (IRI) program will be integral components in the overall strategy to
harness the tremendous data rates and volumes produced by the light sources and neutron
sources. Interoperability and uniform deployment of code on the leadership class facilities
and uniform methods for securely transporting data (with integrity and low latency) will be
vital to the successful deployment and use of DTs to steer accelerators and experiments and
analyze scientific data in the future.

2.4 Other Considerations:
International Collaborations on DTs: There are numerous light sources worldwide that
share similar challenges in operation, modeling, and data handling. For example, the layout,
component design, and operation of the normal-conducting accelerator for LCLS is very
similar to the accelerator for SwissFEL. This presents many opportunities for shared use
and development of technology for DTs, ranging from software frameworks for deployment
to AIML techniques and even direct transfer of ML models between facilities. Funding
support and incentives for shared software development are needed.
Long Term Research Investments: Aside from the topics described earlier, some exam-
ples of long-term research topics include foundation models for enabling cross-facility and
cross-experiment DTs, methods to appropriately integrate quantum computing (e.g. in cases
where it is beneficial to include quantum simulations for physical processes, or solve com-
plex optimization problems suited to quantum computing), and fully integrated co-design of
future light source facilities to aid designing machines with the highest efficiency, broadest
experimental capabilities, and/or best performance across target experiments. Improvements
in operation of present facilities through the use of DTs, alongside the software infrastructure
required to create them, can help inform design of future ones.
Workforce Development: DTs can also be used in training and workforce development.
Training of beamline scientists and accelerator operators can leverage offline copies of DTs.
Facility-agnostic infrastructure for DTs could be used at smaller-scale accelerators, such
as those at universities, exposing students to advanced computing workflows, AI/ML, and
advanced control in addition to preparing them for careers at light sources.
Business Case Analysis: In 2015, it was estimated that approximately 400 hours were
spent on manual tuning by accelerator operators for initial experiment setup at LCLS, corre-
sponding to 9-10 additional user experiments and millions of dollars equivalent value (taking
into account the operating budget). ML-based automated tuning algorithms informed by
system models have shown substantial improvements in tuning speed (e.g. 20x faster elec-
tron injector tuning [21]). Leveraging a DT of the entire facility in online tuning would
substantially reduce time-to-delivery.

Going beyond the efficiency of individual facilities, the similar needs and structures across
facilities means that critical infrastructure for DTs can be shared across them. Rather than
having individual facilities construct their own infrastructure (which is a very large undertak-
ing), ensuring software can be shared and co-developed across facilities will ensure resources
are not wasted on duplicative efforts. Joint developments across facilities (including mod-
ular, interoperable software developments and standards) will ensure modeling and control
technology can be readily transferred between facilities.
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