
 Federal Register Notice: 89 FR 51554, Federal Register :: Networking and Information Technology 
Research and Development Request for Information on Digital Twins Research and Development, 
June 18, 2024. 

 

  

 

Request for Information on the National Digital Twins R&D Strategic Plan 

 

 

 

 

 

 

 

Nature Computational Science  
 

 

 

 

 

 

 

 

 

DISCLAIMER: Please note that the RFI public responses received and posted do not represent the 
views or opinions of the U.S. Government. We bear no responsibility for the accuracy, legality, or 
content of the responses and external links included in this document. 

 

https://www.federalregister.gov/documents/2024/06/18/2024-13379/networking-and-information-technology-research-and-development-request-for-information-on-digital
https://www.federalregister.gov/documents/2024/06/18/2024-13379/networking-and-information-technology-research-and-development-request-for-information-on-digital




Nature Computational Science | Volume 4 | March 2024 | 184–191 185

Perspective https://doi.org/10.1038/s43588-024-00607-6

It is worth noting that, in addition to these, there are also other 
important applications not discussed in depth here. For example, 
MDTs could be used to reduce the use of animals in drug and product 
development, a priority of the US Food and Drug Administration 
(FDA)9. In addition, MDTs could be used to address health inequali-
ties. One of the important sources of inequality in healthcare arises 
from clinical trials that are not representative of certain parts of the 
population, such as women or people of color, or different geographic 
regions of the globe. Another source of health inequities is the scant 
attention paid to rare diseases, for which it is often a challenge to 
recruit large enough cohorts for clinical trials with sufficient statisti-
cal power. Computational models are used now in different contexts 
to create virtual patient cohorts or enlarge existing cohorts through 
virtual patients. If, for a given trial, a digital twin is available that can 
be customized to specific patient groups, then clinical trials could 
be run with more representative patient cohorts. Finally, a further 
potential impact of MDT technology is on the reduction of health 
disparities. Incorporating a model-driven decision support system 
into treatment decisions can help alleviate the healthcare disparities 
that patients face, where social sources of bias (race or ethnicity, sex 
and sexuality, body weight, socioeconomic status and so forth) can 
influence medical decisions.

Keeping healthy patients healthy
MDTs can be an important tool as we transition from curative to preven-
tive medicine. Risk score calculators have been in use for some time, 
and they might use genetic data, data collected from wearables, such 
as heart rate and rhythm or sleep patterns, or exercise patterns from 
fitness trackers. A major obstacle is our lack of knowledge about how to 
define health in the presence of the great biological variability between 
patients and, consequently, our inability to build predictive models 
that can be used for this purpose. At the same time, this application 
of the digital twin concept is the most impactful one in the long run 
and comes closest to a major use of digital twins in industry, namely 
preventive maintenance. It is important to note that, for industrial 
applications, the use of AI/ML techniques face several challenges10,11. 
Mechanistic models are generally preferred because they provide the 
means to forecast the effect of specific interventions and can be used 
to identify optimal control interventions.

Restoring health in ill patients
The most progress in MDT technology has been made for the purpose 
of treating patients with a health condition. A successful example of 
this is the development of automated subcutaneous insulin deliv-
ery for patients with type I diabetes. There are now several US FDA-
approved devices on the market for this purpose. One of these12 has 
been approved for all age ranges, most recently for young children13. It 
is based on an ordinary differential equations model of human glucose 
metabolism, coupled with a closed-loop control algorithm. The model 
receives near-streaming glucose measurements from a subcutaneous 
sensor in the patient and calculates the appropriate amount of insulin 
required, and the control algorithm drives an insulin pump that auto-
matically injects it under the patient’s skin. The model is recalibrated 
to the patient every few minutes. Currently, the algorithm still requires 
some input from the patient about food intake and activity level.

Another application area where MDTs hold considerable promise 
is in critical care, such as ICUs. In a fast-paced environment where 
healthcare personnel are typically confronted with a continuous stream 
of large volumes of data, MDTs can be valuable as decision support 
tools or data integration devices. At the same time, an ICU is a com-
paratively data-rich environment where patient measurements are 
collected routinely. Many of the MDTs in this field are blackbox ML 
models. Some of these are scoring systems14 that provide risk scores 
as output, such as mortality risk for a given patient as described above. 
An example of an alternate approach that is more likely to produce 

medical fields in which MDTs have made substantial progress already. 
We describe some approaches to MDTs in oncology, and we give a 
detailed description of the use of MDTs in cardiology, in particular 
heart arrhythmias.

Here, we will focus primarily on mechanistic modeling as the basis 
for MDTs. A plethora of ML/AI modeling methods have been applied, 
such as causal AI and physic-informed neural networks. We refer the 
reader to two review articles that focus on the integration of mecha-
nistic modeling and machine learning techniques5,6, which we believe 
will be one of the most promising approaches to MDT technology.

Industrial and medical digital twins
Industrial digital twins are characterized by two features: (1) they are 
built on a mechanistic model of the physical system to be twinned and 
(2) they are dynamically calibrated to the system for the purpose of 
forecasting system performance and identifying interventions, such 
as preventive maintenance. In other words, the digital twin evolves with 
the physical system over time. This definition conforms to the vision of 
personalized medicine, either curative or preventive. However, there 
are only a few tools currently in use in medicine that completely fit this 
definition, and we give some examples later. Although the industrial 
paradigm represents the gold standard for personalized medicine, 
digital twins that fall short of this can still serve as valuable tools that 
improve on the standard of care in many cases.

There are three main challenges that distinguish medicine from 
industry when it comes to digital twins. First, for many medical appli-
cations, the relevant underlying biology is partially or completely 
unknown. For example, it is known that some diseases have an impor-
tant microbiome component. However, in most cases, little is known 
about the mechanisms involved. Having said that, microbiome data 
are easy to collect and are abundant, so there are opportunities to 
apply data-driven approaches to patient stratification and potential 
actionable insights for targeting treatments to patient subpopulations 
identified through ML algorithms. Second, even if there are mechanis-
tic dynamic models of the requisite human biology available that could 
be personalized, the needed data are often not available or are difficult 
to collect. Third, human biology is often not easily describable with 
deterministic models based on physical principles, such as systems of 
ordinary differential equations based on physical laws. In these cases, 
other modeling platforms need to be used, such as agent-based models. 
The resulting computational models can be multi-scale, hybrid and 
stochastic. However, the theoretical and computational infrastructure 
to analyze and control such models is not yet developed to a degree 
that is needed for medical applications.

It is worth mentioning that there is no broad consensus as to 
what constitutes a digital twin in medicine7,8. Candidates range from  
simply a computational model relevant to disease to a full digital 
replica of all or part of a patient that is continually or periodically 
updated with patient-derived measurements (this is the full analog 
of an industrial digital twin). For different applications, all of these 
can be effective. The comprehensive report Foundational Research 
Gaps and Future Directions for Digital Twins by the National Acad-
emies9 proposes, as a general definition, a computational model of 
the system to be twinned (in our case all or part of a human patient) 
that is connected to the system in a bidirectional fashion over time, 
periodically recalibrated with patient data, and provides patient 
predictions over time. This definition is closely related to the one 
widely used in industry.

Applications for medical digital twins
There are three main types of application for MDTs (hypothetical sce-
narios are depicted in Fig. 1): keeping healthy patients healthy, restor-
ing health in ill patients, and developing novel therapeutics, such as 
drugs and medical devices. We describe each of these applications 
later in this section.
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also uses a mechanistic model of the early immune response to respira-
tory infections19.

Developing novel therapeutics
Virtual clinical trials are a third application area for MDT technol-
ogy20–22. The basic approach here is to begin with a computational 
model—often mechanistic, in the form of a system of ordinary differ-
ential equations or an agent-based model—that captures the human 
biology relevant to the compound or intervention to be tested. In the 
case of a mechanistic model, the model parameters will typically have 
biological meaning, such as immune cell counts, or relate to a patient’s 
physiology, such as heart rate or glucose levels (as opposed to param-
eters in many ML models). Based on expert knowledge or published 
information, one can determine physiologically reasonable ranges for 
these parameters and create a virtual patient population by sampling 
the parameter space of the model within these intervals. Available 
clinical data might provide information about the distributions of 
parameter values across these ranges. Each specific parametrization 
represents an individual virtual patient. If there is already an existing 
patient population that one desires to enlarge through virtual patients, 
then one can determine ranges for the model parameters based on 
measurements from this existing population. This could be useful, for 
instance, for drug development focused on relatively rare conditions, 
where recruitment of a sufficiently large patient cohort is difficult (as 
described before). Finally, one might aim to create a digital replica of 
a real patient population by creating a digital twin of each individual 
patient and assembling them to an exact digital replica of the patient 
population. This would be required to create a digital twin that fits 
the industrial paradigm. Currently, we do not know of any published 
instantiations of this last approach.

In the following, we provide a more detailed discussion of two 
domain areas for which MDT technology development has been very 
encouraging: oncology and cardiology.

Medical digital twins in oncology
Digital twins for patients with cancer are emerging as a transforma-
tive tool in oncology, enabling a highly personalized and dynamic 
approach to cancer treatment and research. These digital replicas 
facilitate a comprehensive understanding of individual cancer cases, 
allowing for the simulation, analysis and prediction of cancer progres-
sion and treatment outcomes in a virtual environment. This technol-
ogy is poised to make substantial contributions to clinical practice 
by enhancing the precision and effectiveness of cancer care23,24. The 
development of such a digital twin involves the meticulous integra-
tion of diverse patient data, such as genetic information about the 
patient and the tumor, clinical history and detailed imaging data. 
This rich dataset forms the foundation for the digital twin, enabling 
the simulation of tumor behavior and the assessment of potential 
treatment strategies.

Advanced ML algorithms and computational modeling tech-
niques, such as multi-scale models that span molecular, multicellular 
and organismal scales, are integral to this process. These modeling 
techniques may include systems of ordinary differential equations or 
agent-based models, as well as other dynamical systems models. The 
latter are crucial for modeling molecular interactions within cancer 
cells that ultimately determine cellular phenotypes. Moreover, ML 
algorithms contribute by identifying patterns and correlations in large 
datasets, helping to predict tumor behavior and response to treatments 
with greater accuracy and efficiency.

In addition to enhancing treatment planning and assessment, 
digital twins for patients with cancer can play an important role in 
monitoring cancer progression and evaluating treatment responses. 
This continuous assessment allows healthcare professionals to make 
real-time, data-driven adjustments to the treatment plan, ensuring the 
delivery of the most effective and personalized care. This adaptability 

is pivotal in enhancing the likelihood of positive treatment outcomes 
and improving the overall quality of life for patients.

The multifaceted nature of these digital twins also enables the 
bridging of various biological scales, from molecular changes to physi-
ological responses. Cancer digital twins incorporate data about the 
patient’s pre-existing health, cancer type, size and location of tumors, 
their metabolic activity, and molecular markers expressed by the 
tumor. The model will then learn and adapt to the evolving patient data 
(for example, timing and type of chemotherapy, effect on tumor size, 
development of adverse effects, occurrence of metastases), ensuring 
that the models remain up to date and reflective of the patient’s current 
condition. This periodic updating enhances the predictive accuracy of 
the digital twins, ensuring that healthcare professionals have access 
to the most relevant and current information for making clinical deci-
sions. The integration of real-time data enhances the responsiveness 
and adaptability of cancer digital twins, ensuring that they remain a reli-
able and effective tool for guiding cancer treatment and management.

The application of digital twins also holds promise for addressing 
issues of equity in cancer care. By providing a platform for the explora-
tion and assessment of diverse treatment options, digital twins enable 
the delivery of personalized and effective cancer care to a broader 
patient population. This inclusivity ensures that individuals from 
various demographic backgrounds have equitable access to advanced 
and innovative cancer treatments, promoting fairness and equality in 
healthcare delivery.

There are now several MDT projects under way that can realize this 
promise and become effective tools in the clinic. For example, Wu and 
colleagues have developed an MDT project25 that is designed to predict 
the progression of breast tumors using a partial differential equations 
model of breast tissue, calibrated with patient-specific images from 
both magnetic resonance imaging (MRI) and quantitative positron 
emission tomography. The images are used to derive model parameters 
that capture the cell-migration and tumor-cell proliferation properties 
of the specific tumor. The model can be used to forecast the effect of 
drug treatments or predict the efficacy of immunotherapy26.

A similar approach has proven effective when using a digital 
twin for patients with glioblastoma, a highly aggressive type of brain 
tumor with poor prognosis, which is part of the growing field of math-
ematical neuro-oncology27. This MDT, developed by Swanson and col-
leagues, also uses MRI images, in this case of the brains of glioblastoma 
patients28. A time course of such images allows the estimation of two 
parameters in the partial differential equation, one that captures the 
proliferation rate of the tumor and another that captures the rate of 
cell migration. These two parameters are independent of each other, as 
it has been observed that tumor cells either migrate through tissue or 
divide, but do not do both at the same time. With these patient-specific 
parameters, one can predict the actual extent of the tumor, informing 
surgery planning. The reason this cannot be done accurately simply 
from the MRI image is that tumor cells invade adjacent brain matter 
in a diffuse fashion that is not captured accurately by imaging, so the 
actual dimensions of the part of the brain containing tumor cells cannot 
be determined from MRI images alone. Modified versions of the digital 
twin can also predict the effect of different treatments29.

Although there has been much progress in this field, there are 
still big challenges ahead, including a lack of sufficient patient data 
and a lack of sufficient mechanistic understanding underlying the 
many subtypes of different cancers and of the effectiveness of an ever-
growing supply of cancer drugs, impeding model-based prediction of 
appropriate interventions at a given stage of the disease.

Medical digital twins in cardiology
MDTs are transforming the field of cardiology by providing tools for 
patient care, treatment planning and healthcare delivery. These virtual 
representations of the heart and its functions hold immense potential 
to improve the diagnosis, management and outcomes of cardiovascular 
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diseases. A cardiac digital twin is typically composed of three main com-
ponents: (1) data acquisition (imaging, EHR, genetic data and weara-
bles), (2) modeling and simulation (based on anatomy and physiology) 
and (3) clinical decision making. Here, we showcase the pivotal role 
that heart MDTs can play in decision support and patient care, and we 
focus on one of the most important aspects of cardiology: arrhythmia 
care management. We present two of the clinical applications of heart 
MDTs: the prediction of sudden cardiac death due to arrhythmias in 
various diseases and the use of MDTs to provide guidance in arrhythmia 
treatment by catheter ablation.

The incidence of sudden cardiac death due to arrhythmias is 
increasing globally, and accurate individualized risk assessment of 
death remains a major unmet clinical need. Heart MDTs have made 
major strides in predicting a patient’s risk of sudden death, for patients 
with ischemic (that is, caused by coronary atherosclerosis) and non-
ischemic cardiomyopathies. The study by Arevalo and colleagues30 
demonstrated the first utilization of MDTs created from contrast-
enhanced MRIs of a cohort of patients (n = 41) after myocardial infarc-
tion (scarring in the heart) to determine the patients’ likelihood of 
developing infarct-related ventricular arrhythmias and sudden death. 
The MDT prediction outperformed all current clinical risk assessment 
metrics, indicating that MDTs can be used to determine the need for a 
prophylactic implantation of defibrillator devices to prevent sudden 
death. A more complex approach to the assessment of the arrhythmia 
propensity of patients with previous infarcts using MDTs involves the 
additional incorporation of penetrating adipose tissue (fat)31.

In relation to predicting the risk of sudden cardiac death in patients 
with non-ischemic cardiomyopathies, heart MDT studies have demon-
strated the clinical utility of the approach in pediatric patients, such as 
those with acute myocarditis32 and with repaired tetralogy of Fallot33. 
MDT technology has also been used34 to predict arrhythmia risk in 
hypertrophic cardiomyopathy, a common genetic disease character-
ized by a thickening of heart muscle, substantially outperforming 
current clinical risk predictors. Another non-ischemic cardiomyopathy 
associated with high risk of sudden death and difficult risk prediction 
is cardiac sarcoidosis, an inflammatory disease. Shade and colleagues 
have developed a two-step prediction approach, combining MDT with 
ML in a study of 45 patients35. The results from MDT simulation were 
fed, together with a set of clinical biomarkers, into a supervised clas-
sifier. Finally, a genotype-specific heart MDT (Geno-DT) approach was 
recently developed to predict the arrhythmia circuits in patients with 
arrhythmogenic right ventricular cardiomyopathy (ARVC) of different 
genotypes36. This approach revealed that the underlying arrhythmia 
mechanisms differ among ARVC genotypes. The Geno-DT approach 
demonstrated the potential to augment therapeutic precision in the 
clinical setting, which can lead to more personalized treatment strate-
gies in ARVC.

Catheter ablation plays a major role in the contemporary manage-
ment of arrhythmias. This procedure involves the use of catheters that 
are maneuvered into the cardiac chambers and deliver radiofrequency 
energy to specific locations to terminate the perpetrator of arrhyth-
mia. Identification of these specific locations in the heart is, however, 
difficult, and ablation targets are often inaccurate, with new (emer-
gent) arrhythmias occurring post-ablation and necessitating repeat 
procedures and re-hospitalization. Personalized MDT technology has 
made major strides in improving ablation precision by providing non-
invasive localization of ablation targets. Following a validation study37, 
MDTs were used to predict the ablation targets and guide the ablation 
in post-infarction patients38,39. This work highlighted the enormous 
potential for MDT technology to impact the clinical management of 
ventricular arrhythmias. The MDTs predicted not only the targets 
for initial ablation, but also the ablation targets for re-do procedures 
several years later.

Another exciting aspect of personalized MDTs is the ability to plan 
different atrial fibrillation management strategies, and even predict 

a patient’s risk of recurrence. Atrial fibrillation occurs in the upper 
chamber of the heart and is the most common human arrhythmia, 
affecting 1–2% of the population. Although not as dangerous as ven-
tricular arrhythmias, it is associated with a high probability of stroke 
and a high burden of healthcare expenditures due predominantly to 
patient re-hospitalization. Several atrial MDT studies have tested the 
effectiveness of different ablation strategies in patients with a persis-
tent form of the arrhythmia. The discovery of atrial fibrosis as a sub-
strate for atrial arrhythmias resulted in the development of atrial MDTs 
reflecting the patient-specific atrial fibrosis distribution40–44. Boyle and 
colleagues pioneered a prospective ablation study for patients with 
persistent atrial fibrillation and fibrosis entirely with personalized 
atrial MDTs45. In that study, the MDT-proposed ablation targets were 
used to steer patient treatment. Finally, atrial MDTs have been used, 
often in combination with ML or other technologies, to predict atrial 
fibrillation recurrence46,47.

The initial successes with heart MDTs constructed from imaging 
and other health data described above have opened new pathways for 
the development and application of MDTs in cardiology. Of particular 
importance will be the ability to incorporate continuous data from 
various streams, thus ensuring that the patients’ MDT continuously 
reflects the state of the patient’s heart.

Opportunities and challenges
MDT research has largely been scattered across individual laborato-
ries and companies, often without explicitly using the MDT label. In 
recent years, there has been an emphasis on research funding for MDT 
projects in Europe, through the Horizon Europe grant program of the 
European Commission. Possibly the most ambitious project is the 
Ecosystem Digital Twins in Health (EDITH)48, a comprehensive initia-
tive to develop a roadmap for digital twin technology in healthcare in 
Europe, funded by the European Commission. The Virtual Physiologi-
cal Human (VPH) is a European initiative to lay the groundwork for a 
collaborative framework to investigate the human body as a complex 
system49. Other examples of a large-scale MDT project include the 
Swedish Digital Twin Consortium50,51, aiming to create MDTs for the 
entire Swedish population. In the United States, the National Institutes 
of Health and the US Department of Energy have partnered to support 
the development of digital twins for cancer patients24. These and other 
community- and agency-driven MDT efforts provide a wide range of 
opportunities for research collaborations, funding and community 
infrastructure.

One application area that is particularly promising and urgently 
needed is the response to infectious diseases. The SARS-CoV-2 pan-
demic was marked by the major challenge of the highly heterogeneous 
response to infection and treatment. The availability of MDTs that 
capture certain features of the immune system, even in rudimentary 
ways, could have provided additional decision support for healthcare 
providers52. Subsequent efforts to advance MDT technology focusing 
on the immune system were developed53–55. These and other efforts 
have begun to catalyze a research community focused on the immune 
system, as a major contributor to infectious-disease outcomes, as well 
as other diseases such as cancer, autoimmune diseases and diabetes.

As mentioned previously, the main three factors limiting MDT 
development are our incomplete knowledge of human biology, the 
availability of patient data in sufficient quantity and quality (and at 
all scales) and the lack of a well-developed modeling technology that 
can form the basis of an MDT industry comparable to that existing for 
industrial applications. Furthermore, to bring digital twin technology 
into the clinic, we need to solve a range of problems related to patient 
privacy, security, ethics, standards for models and data, and regulatory 
requirements. For the latter, we refer the reader to the strategic plan56 
released by the EDITH project. This plan addresses a comprehensive 
range of regulatory and business aspects for developing and imple-
menting digital twin technology in healthcare at scale.
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In particular, the plan addresses issues of data collection, privacy 
concerns and ethics guidelines. A plethora of different data types and 
sources are potentially valuable for MDT applications, collected from 
wearables and other types of mobile sensor, patient charts, a wide 
range of imaging data, as well as data collected from samples, such as 
blood or tissue samples from biopsies. Some of these are subject to 
patient protection regulations under the HIPAA law, whereas others 
are unprotected, such as data from fitness trackers or genetic sequence 
information generated by private companies. A particular concern, 
as with other personal data, is that an MDT is a vehicle for systematic 
data integration—one of its strengths as a medical tool—but potentially 
damaging to patient privacy. Issues such as who controls the MDT of 
a patient, who it belongs to, and what can be done with it, are not cur-
rently settled and will likely require regulatory actions.

Another challenge that must be addressed in the future is related 
to the models underlying MDTs, which in many cases will be multi-scale. 
Most drugs, for example, have mechanisms of action at the intracellular 
scale, but have organ- or organism-level effects. Models will probably 
be hybrid, combining for instance blood flow through an artery, mod-
eled by a partial differential equation, with intracellular signaling in the 
endothelial cells lining the artery, modeled by a system of ordinary dif-
ferential equations or a Boolean network. The models will probably be 
stochastic too, reflecting, for example, features of the immune system 
or gradient-based movement of cells in a tissue. These characteristics 
pose challenges to most of the established model building and analysis 
tools available, as well as mathematical control approaches. There are 
no formal methods available for this type of model, and tools that are 
standard for differential equations models, such as global sensitiv-
ity analysis, identifiability, forecasting and optimal control, are not 
directly applicable. New approaches to model validation are required 
too. Furthermore, MDT models will need to be updated and expanded 
over time, as our knowledge of biology or the application type changes. 
Standard model implementation methods do not result in models that 
are robust with respect to these operations. To provide the basis for 
a large-scale standardized MDT industry, extensive research in this 
area is required.

The future
Over the past two decades, digital twin technology has evolved to 
become an increasingly mature and rapidly growing industry, projected 
to reach US$183 billion by 203157. Fitzgerald and colleagues58 provide a 
discussion of the most important opportunities and challenges for the 
further development of digital twin technology for industrial applica-
tions, including the following central research questions:

 1. What are the specifications that are necessary for a dependable 
digital twin?

 2. What are the key specifications for usability and credibility that 
are required for a digital twin?

 3. How accurate does a digital twin have to be to be useful?
 4. What benefits does a digital twin have to provide to justify con-

structing one?
These same open questions need to be answered for MDTs. Indus-

trial digital twin technology is benefiting from a more highly developed 
infrastructure, including standards for computational model speci-
fication, standard operating procedures and physics-based models 
for many of the systems to be twinned, to name a few. In biomedicine, 
in contrast, existing MDTs and MDT projects are still early in their 
development, without broadly available infrastructure, standards and 
templates for the successful development of commercial products. 
Successful strategies for commercialization remain largely unexplored, 
and the regulatory requirements and hurdles are formidable.

A special challenge MDT technology faces is a very complex regu-
latory environment for the use of computational models in medicine. 
These challenges need to be addressed before the technology can be 
broadly adopted. The FDA has encouraged the use of modeling and 

simulation in the development and approval process of drugs and 
medical devices, and has issued guidance on this topic59,60. A compre-
hensive set of standards in relation to the credibility of computational 
modeling for medical devices is also available61, as well as a summary 
of all regulatory efforts and guidelines62. Unfortunately, there are cur-
rently no standards available for models that are not physics-based and 
use modeling platforms other than systems of differential equations. 
As mentioned earlier, in many cases, MDTs will have to rely on other 
model types, and additional standards and requirements will need to 
be developed for approval.

One of the biggest challenges to precision medicine and the use of 
MDTs is the biological heterogeneity of patients. To account for this, 
we will probably need to develop higher-resolution models than the 
ones that are currently available, given our knowledge of human biol-
ogy and the data to capture it. By analogy, the accuracy of numerical 
weather prediction models over longer forecasting windows provides 
a good paradigm. Accuracy has increased dramatically over the past 
two decades, largely due to the higher-resolution models that have 
been made possible by higher-resolution data (and more powerful 
computation resources). This reflects the fact that both humans and 
the atmosphere are truly complex systems in which microscopic per-
turbations can result in macroscopic effects, the proverbial butterfly 
effect. Once we make progress on these challenges, medical digital 
twins will change healthcare fundamentally, helping us to transition 
from curative to preventive medicine.
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