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1. Artificial Intelligence (AI): 

1.1. Integration of Digital Twins (DT) with AI 
Integrating machine learning (ML) models with DTs has a profound gestalt enhancement, and 
more research is needed to realize these benefits for diverse national assets (facilities, laboratories, 
and their key systems). For example, a DT’s utility can be greatly augmented by adding a fast-
executing, lower-fidelity “data-only” prediction capability that is computationally cheaper than 
using higher-fidelity, slower-executing physics-based simulations.  For example, in real-time 
control applications on complex, nonlinear problems such as controlling traffic lights in a city to 
reduce the emissions created from traffic, reinforcement learning based on pre-trained ML models 
could be deployed to map the state of the system to the control action to be taken, which may be 
quicker, yet perhaps less accurate than, say, deploying a high-fidelity simulation. These lower-
fidelity models may be purely data-driven and trained from data gathered by the physical device, 
or trained using simulation data produced by higher-fidelity physics models. 
DTs can also leverage AI surrogates built using a mixture of many lower-fidelity simulations 
complemented with higher-fidelity simulations. Advancements in AI models such as diffusion 
models enable comparing higher-dimensional data (e.g. video) between the digital and physical 
assets. Investment in the development of these capabilities to integrate simulations of different 
fidelities and AI architectures for physical-world realistic comparisons will greatly enhance the 
generalizability of DTs. 
Integrating ML models with DTs can also enable real-time anomaly detection. ML algorithms can 
be trained to identify irregularities in data that deviate from the norm. Unlike traditional anomaly 
detection methods that compare the incoming data to a predefined threshold value, AI anomaly 
detection relies on complex models that can adapt to changing underlying conditions and can 
accommodate situations where many different variables impact the anomaly being detected. 
Despite its benefits, several challenges in integrating anomaly detection methods with DTs remain. 
Investment is needed to ensure that methods for data-driven anomaly detection that are integrated 
with DTs are secure, safe and assured. In addition, there is a need to better understand how DTs 
can be used in combination with risk analysis methods for identifying anomalies that can’t be 
easily anticipated. 
When integrated with DTs, ML technology can also be used in applications where systems 
performance needs to be optimized. In high-complexity assets such as particle accelerators, high-
throughput scientific computing, and the civil infrastructure of large facilities, we find all of these 
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DT-plus-AI applications, as well as a need for using DTs in the context of control and forecasting 
when maintenance is required. In applications such as cryogenic facilities where the effects of 
control actions take long and variable times to observation, the predictive function of a DT may 
be used by the controller to take precise action without over- or under-correcting.  For all of these 
applications, investment is needed for both research and implementation.  

1.2. Generative AI for DT Modeling & Simulation 
Investment is needed in the application of generative AI to augment data from physical systems. 
In many applications there is a lack of data, and this is a hindrance to optimal decision making. In 
some applications, collecting data is highly resource intensive, and collecting a sufficient amount 
of data for calibrating models that underlie DTs is hardly possible. In other applications, one may 
wish to deploy DTs for a wide variety of scenarios, with particular interest in scenarios that have 
not been observed in the past, but that could have huge implications for resiliency and planning. 
For such cases, generative AI capabilities are highly relevant. If generative AI can create data to 
reliably fill in data-sparse regimes, whether rare or simply prohibitively costly, we will be able to 
better calibrate models and understand behaviors of the system in unexpected and rare settings, 
increasing resilience and safety.  Yet this work remains to be researched. 

1.3. AI Trustworthiness  
The use of AI in DTs can enable safety because different (AI-generated) scenarios or underlying 
data driven models allow to explore a wide range of possibilities. However, with AI models mostly 
being black boxes that lack explainability, there is a danger that blindly relying on AI within DTs 
may not be safe. Especially when exploring scenarios that have never been seen before (but that 
are plausible), the amount of trust put into AI should be limited as AI models are known to not 
extrapolate well. To this end, when leveraging AI models in DTs, uncertainty quantification 
methods must be integrated that will accurately reflect how trustworthy a DT based on AI is.   
In addition, explainable AI methods and techniques offer insights into the decision-making process 
of AI, creating transparency and understanding around a particular decision or prediction. 
Explainable AI plays a key role in enhancing accuracy and reliability of AI models. By providing 
developers insights into the decision-making process of their models, these tools allow them to 
identify and rectify flaws within the model. Although AI models themselves are computationally 
cheap, explainable AI tools are computationally expensive, challenging real time implementations. 

2. Data:
2.1. Data Collection

DT reusability depends heavily on data collection practices. Data collection frameworks used 
today vary between domain applications, and even within domains, due to a lack of guidance on 
best practices.  There is a need for governance on communication protocols, that bring DTs closer 
to real-time and to industrial standards, that can be reusable across DT applications. Often data is 
collected through domain specific enterprise level data management software and vary from 
system to system. The enterprise software consumes proprietary data and codes that are not shared 
with external parties. It would be beneficial to develop a template for non-disclosure agreements 
that third parties can sign up to access the data and code for the larger good of the domain. 

2.2. Data Curation and Provenance 
Data and metadata standards and curation methods differ from domain to domain and are needed 
to bridge the gap between raw observed data with machine readable scientific knowledge. 
Although some of the data curation can be automated, often a domain expert may be required to 
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tag and standardize the data and metadata.  Once data and metadata are standardized, data may 
also need to be converted to common formats especially with time series data. Time should be 
standardized across all raw and observational data and any transformation to a common grid should 
use standard protocols to propagate errors and uncertainties. Standardization and curation should 
follow protocols to ensure that the data is Findable, Accessible, Interoperable and Reusable 
(FAIR).  Quality Assurance/Quality Control documentation is required as one type of metadata 
when datasets are curated, disseminated and published. Published datasets should use persistent 
(i.e., digital object identifiers [DOIs]) when data are shared.  The provenance of the data is 
important to capture in the standardized metadata to help enable reproducibility.  A broad notion 
of data should be taken, where the data includes the DT models themselves, such as the hyper-
parameters and weights for machine learning models. 

2.3. Data Sharing and Usage 
There is a need for investment in data sharing solutions that ensure an integrated data usage across 
domains and across system lifecycle phases. Data collected during system design (i.e. 
requirements, system assets, system functions, spatial footprint) is produced by different 
stakeholders within different domains and may go from micro-scale to system level scale. 
Traditional documents centered design data management can lead to silent errors, cost overruns 
and schedule delays. There is a need for the implementation of model-based systems engineering 
practices that provide an authoritative source of truth and enable data transfer across domains and 
scales. Models generated using model-based system engineering can then serve as early maturity 
DTs, and be used to validate the system, accelerate operator training, and produce data required 
for AI algorithms training and testing.   
Data sharing across system lifecycle phases is equally as important as data sharing within design 
teams. Early maturity DTs described above can evolve into DTs that enable autonomous operation 
at their highest maturity level. The advancement of digital thread technology is essential for taking 
model-based systems engineering models out of isolation and providing an interface with external 
digital definitions created later in the system development process. 
Data collected during system operation is produced by different domains and also need tools that 
enable integration and transfer of this data across models and spatial and temporal scales that 
support system operation (e.g., optimization models, high-fidelity physics models, reduced order 
models, anomaly detection models, etc.) 
Some domains sensitive to national security may require that the data are not shared among users 
outside their project. As an example, hydropower facilities prefer to keep their operational data 
secure and accessible only to their operational teams.  Data Management and dashboards need to 
be set up with the right access controls to ensure that the data is securely shared only among project 
members. 

2.4. Shared Public Datasets and Repositories 
Data is essential for training of AI algorithms and tunning control methods. While data is abundant, 
its format, availability and provenance are highly inconsistent. Investment in structured public 
datasets and repositories can enable the advancement of AI and control technology within a 
domain. In addition, these datasets and repositories enable cross-cutting DT development.  
Leveraging commonly adopted and standardized API’s to access data and metadata from publicly 
managed data repositories will advance the use of AI to train and validate DT for complex systems.  



4 
 

Having access to the underlying data and provenance helps to enable reproducibility and derive 
common benchmarks that can drive long-term research and development activities. 

2.5. Real-Time Data Integration 
DTs are widely used for optimizing operations and controlling complex systems, e.g., DFW airport 
terminal. To do this effectively, DTs need access to real time data, and use it in continuous 
recalibration and adaptation of models to adjust to system dynamics and enable decision making. 
This requires investment in data infrastructure and data processing tools that can integrate 
heterogeneous data and use it to optimize models on the fly. High performance computers and data 
centers as well as edge-computing will be essential for collection and further processing of data 
not only in real-time but also over longer timescales for recalibration of the DT. Particularly 
important for distributed sensor environments. Depending on the application, questions may arise 
as to how data changes over time, if older data could be discarded, which data are important for a 
certain task and uncertainty/noise associated with real time data. Historical data can also be used 
to predict or prescribe maintenance of complex systems. For aging complex systems such as 
hydropower facilities, historical maintenance data need to be digitized and may require the need 
to use machine learning and image processing to sort, filter, and tag data. High throughput and 
high volume (near-) real time data integration is critical for safety and response type applications.  

 
3. Ecosystem: 
DTs are being developed and deployed in a wide variety of scientific applications. These include 
materials synthesis and discovery; real time traffic control to reduce congestion in cities and reduce 
associated emissions; in virtual biofuels engineering; future climate modeling; offshore wind farm 
design and control; buildings modeling and control; modernizing electricity infrastructure and 
attaining 100% renewable electricity goals (e.g. LA100, PR100, LT100); buildings modeling and 
control; and grid resiliency.  
While some of these applications appear similar in nature, there are no standards that would allow 
for interoperability of models, including a lack of agreed-upon communication protocols, data 
naming conventions, data QA/QC and other processing steps, or DT updating rules. While the 
smart buildings sector is increasingly using a common language to allow various sensors to talk to 
each other, such advances are missing in other scientific domains where DTs are developed for 
bespoke control actions. This leads to a lack of scalability and reusability. Moreover, even within 
a specific science domain, there is a variety of tools that can be leveraged leading to a potentially 
confusing landscape of which tool to use when and how the tool’s input requirements fit with the 
data collection mechanisms.  

3.1. Cross-cutting Collaborations 
To address the challenges of interoperability, sensor communication and availability, and 
cascading effects of interruptions, investment in a holistic systems approach is needed. Such 
approaches can only be realized through tight cross-cutting collaborations that involve domain 
scientists from all areas, e.g. every entity that may be affected by disturbances and failures (directly 
and indirectly), as well as computational and data scientists who will be able to devise optimal 
control strategies and visualization capabilities that enable informed decisions by providing a 
holistic picture of the physical process under investigation.  

3.2. Twin-of-Twins Demonstrations 
Along with the need for investment in cross-cutting collaborations there is a need for investment 
in cross-cutting DT demonstrations and testbeds. Multiple DT demonstrations have been 



5 
 

performed to this day within domain boundaries. These DT applications are built to meet their 
physical counterpart’s needs and objectives. However, in order to overcome challenges associated 
with interoperability, sensor communication, and cascading effects of interruptions, the next 
generation of DT demonstrations will need to allow for communication between domain specific 
twins, that not only meet their individual system's needs and objectives, but also collaborate to 
meet global needs and objectives. For example, the DT of a nuclear reactor may assist operational 
process in maintaining high performance and enforcing security, while also communicating with 
the DTs of hydrogen, solar, wind and biomass systems, that coexist with the reactor in an integrated 
energy grid, to assist the entire system in meeting the grid’s demand. For such demonstrations to 
take place, interdisciplinary testbeds with DTs will need to be built and be operating. 

 
4. International: 
Certain systems that may benefit from the application of DT technology cross national boundaries 
(e.g., air traffic control systems, supply chain systems). To overcome the challenges of 
interoperability and cascading effects of disturbances or interruptions at a global scale, DT 
demonstrations that cross national boundaries are needed.  These demonstrations will require 
investments that support international collaborations and the establishment of international DT 
standards.  

 
5. Long Term: 
Long term research and development questions revolve around the updating and/or maintenance 
of DTs and their adaptation to changing systems or environments, e.g. add-ons of new data 
collecting sensors, integration of new tools, new processes, changing risk profiles, etc. The 
heterogeneity and multi-scale nature of the tools, models, and data that come together in a DT can 
be vast and require documentation to enable updates, integration, and long-term support. There 
needs to be a built-in flexibility in the design-build-operate cycle that allows changes and 
modifications, with the goal to not limit operability to the specific conditions present when the DT 
was first created.  If funding were available to develop standards and best practices for these long-
term concerns in the DT field, considerable expense could be saved.  
In applications such as buildings control, traffic control, wind farm operation, user facility 
operation, or materials synthesis, a continuous feedback loop between the DT and the physical 
counterpart is used, where data informs the models in the DT. These models are currently used to 
inform operations or experimental control, and newly acquired data from the physical system is 
utilized as input to the DT for model recalibration and updating. Enabling predictive nature of 
digital twins, going beyond reflecting what happened in the past and what is happening now would 
be a natural next step. Therefore, determining what is “right” data to be collected to infer 
information critical for model calibration, and adaptation, and minimizing overheads arising from 
data transfer is essential to allow for optimal and predictive real-time controls. Moreover, the data 
infrastructure must be in place, e.g., in laboratory settings, the transfer of data from diagnostics 
instruments to the DT must be enabled, which may require infrastructure investments.  
Experimental facilities have very long lifetimes and the DTs need to evolve with the technology.  
The existence and performance of the underlying software needs to be ensured over the lifetime 
of the experiment.  Hence, investments in software sustainability and long-term reproducibility are 
necessary for DT technology to penetrate into the experimental facilities. 
To ensure the benefits of DTs in the long term, it is critical to invest in developing and 
promulgating best practices for support, documentation, and human-in-the-loop operation, 



6 
 

mitigating the risk to knowledge retention which otherwise threatens a DT with loss of 
functionality or performance.  
 
6. Regulatory: 
DTs have a role to play in regulation, if the investment is made to realize it. The compulsory 
licensing and regulatory process in several industries can be slow, expensive and convoluted. For 
instance, the currently mandated process to obtain a construction permit and operating license for 
a nuclear reactor can take up to decades and incur costs that escalate to hundreds of millions of 
dollars. From design, to construction, to operations and eventual decommissioning, the nuclear 
reactor goes through rigorous scrutiny from the regulator who is charged with ensuring adequate 
protection of public health and safety. DT technology can potentially accelerate these processes as 
the DT allows the regulator to virtually test scenarios, evaluate potential impacts, and verify 
compliance with regulations while avoiding the time-consuming burden of document review, 
information retrieval, and reasoning through safety and security compliance. In addition, DTs can 
continuously monitor operations and conditions. This real-time data can be used by regulators to 
ensure ongoing compliance with licensing requirements. There is a need for investment in the 
integration of DT technology with licensing and regulatory processes.  

 
7. Responsible: 

7.1. Ethical Use of DTs 
Investment in DT safety, security, and assurance solutions is critical for ensuring the ethical use 
of DTs, especially in high-risk use cases. Ensuring robust security measures protects sensitive data 
and upholds ethical standards for privacy protection. Ensuring safety of DTs involves rigorous 
testing and validation to prevent malfunctions or harmful outcomes, protecting users from potential 
risks with the deployment of DTs.  Assurance processes ensure information generated by DTs is 
trustworthy and will not lead to harmful decisions.  

7.2. Data Privacy 
Often there are two categories of data used to derive DTs, public data captured and made 
accessible, and private data that is not shared.  The private data may be proprietary or have other 
restrictions on its usage.  To maintain data privacy, an investment in privacy preserving and 
federated learning methods may be appropriate.  In these methods, the public data can be used to 
generate a DT and the private data can be used by those with appropriate access to refine the DT 
for their particular situation.  By passing model parameters back to the public repository, the public 
DT may be improved without compromising the private data, but checks should be devised to 
ensure that private information cannot be extracted inadvertently from such a public repository. In 
practice, maintaining data privacy will require investment in “red teaming” exercises that simulate 
an attack on the DT to identify vulnerabilities and weaknesses.  

 
8. Standards: 

8.1. Standardization of DTs across Asset Lifecycle 
There is a need for investments that support standardization of DT technology across the system 
lifecycle to ensure consistency in how DTs are developed, deployed, and utilized. This consistency 
will facilitate seamless transition and integration of data and models used for design, 
manufacturing, operation, and maintenance to new applications, and to improving existing DT 
applications. 
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8.2. Standardization of DTs across Domains 
Standardization of DT technology by individual domains ensures consistency in how DTs are 
developed, deployed, and utilized within that domain. However, many industries increasingly rely 
on interconnected systems that work together to achieve common objectives in addition to their 
individual objectives. In order to do so, DTs of specific domains need to work together seamlessly 
through data sharing and coordination. There is a need for investment in federated common data 
interchange formats at the domain boundary to facilitate easier integration and analysis of data 
from diverse sources, enhancing decision-making processes.  

8.3. Shared Public Domain Ontologies 
Ontologies provide a common vocabulary and framework for defining concepts and relationships 
within a specific domain. By investing in efforts that make specific domain ontologies available 
to other domains to access, different organizations in multidisciplinary systems can ensure 
consistency in terminology and data representation, promoting interoperability and data 
integration. 

 
9. Sustainability: 

9.1. DTs Computational Requirements 
DTs rely heavily on computational resources (e.g., high performance computing, data centers, 
etc.). There is a need for investment in solutions that help to minimize computational requirements 
of DTs, and reduce the strain on these computational resources, which will lead to decreased 
energy use and reduced carbon foot-print of DT operations, and expanded adoption in applications 
which can benefit from the DT approach. 

9.2. DT Lifecycle Continuum  
DTs are evolutionary by nature, and their scope changes as their physical counterpart evolves 
through the different phases of its lifecycle. A DT built during a system’s design phase can be used 
for extensive simulation and testing before physical prototypes are built, reducing the need for 
material resources and minimizing waste. As the DT evolves, “digital threads” allow for the 
seamless flow of data across all phases of a system’s lifecycle. This data continuum can ensure 
consistency and accuracy, helping organizations avoid silent errors that lead to redesigns and 
additional resource consumption and waste. There is a need for investment in solutions that foster 
this DT lifecycle continuum, such as digital threads and semi-autonomous design. 

9.3. Cross-cutting software ecosystem 
There is a need for investment in the development of a cross-cutting software ecosystem. Having 
a cross-cutting software ecosystem for multi-disciplinary DT applications could avoid the 
duplication of data and models across organizations and minimizes the computational resources 
needed to maintain a DT operational. As mentioned previously, minimizing computational 
resources lead to lower energy consumption by the DT, making the technology more sustainable 
and its adoption more feasible. 

9.4. Reusable, Repeatable and Transferable DTs 
Similarly, there is a need to ensure that new iterations of DTs are reusable, repeatable and 
transferable, leading to twins that can be deployed multiple times within similar domain scenarios, 
can be replicated across different domain scenarios, and can be adapted for different domains, 
respectively. This also minimizes computational resources and lowers energy consumption, 
making DTs more sustainable.  Work is needed in order to realize these benefits. 
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10. Trustworthy: 
10.1. System Engineering Practices for DT Design 

DT design often involves multiple disciplines, such as mechanical engineering, electrical 
engineering, software development, and data science. Systems engineering practices facilitate the 
integration of diverse knowledge into a cohesive and effective design, while providing means for 
risk identification, assessment, and mitigation throughout the design process. There is a need for 
federated integration of this holistic approach to DT design, not yet widespread in the national 
labs.  Systems engineering can help align the scope for the DT, and anticipate potential challenges 
and uncertainties associated with its components, ensuring reliability. Another important 
characteristic of DTs is their evolutionary nature, with maturity levels being reached at different 
stages of its lifecycle. Systems engineering practice considers the entire lifecycle of the twin, 
ensuring that the twin is designed with scalability, sustainability and long-term usability in mind. 

10.2. Integration of DT Design and Cyber Security Processes 
DTs often handle sensitive data related to physical systems, operations or even personal 
information in sectors like healthcare. Investments in the integration of cybersecurity 
considerations into the DT design process ensures that this data is protected from unauthorized 
access, breaches and cyberattack. In addition, cybersecurity measures implemented at the design 
phase can help prevent malicious actors from disrupting the DT processes during system operation 
(e.g, unauthorized control of critical systems). Cybersecurity safeguards can also help maintain the 
integrity of the data within DTs. This includes ensuring the data is accurate and has not been 
tampered with, which is essential for making informed decisions based on DT outputs. Here, a 
coherent program of investigation in the very near term can save much hassle and redesign in the 
future.  

10.3. Risk Analysis and DTs 
DTs can simulate different scenarios to determine the likelihood and impact of various risks. This 
can help organizations prepare response strategies tailored to specific risk events and enhance 
resilience. This is particularly important in multi-domain environments, where DTs can be used 
for cross-disciplinary risk analysis by integrating data and insights from different domains, and 
enhance resilience to cascading failure scenarios. However, it is equally important to include DTs 
as a potential vulnerability when performing risk analysis. As mentioned previously, DTs are 
vulnerable to cybersecurity threats, and are as much part of the system as the other physical 
components. Therefore, it is extremely important to understand, detect and mitigate the risks 
associated with its implementation, including potential malicious use and ingestion.  

10.4. DTs Interdependence Analysis  
DTs often model complex systems with interconnected components and processes. Investment in 
DT interdependencies analysis is needed to help stakeholders gain a comprehensive understanding 
of how different elements interact and influence each other within the DT. It can also help identify 
critical components and relationships that are essential for the accuracy and reliability of the 
information generated by the twin.   

10.5. Assurance  
Investment in assurance methods is critical to ensure that DTs are reliable, safe, and perform as 
expected. This involves rigorous validation and verification processes to check the accuracy and 
fidelity of the DT models. Techniques such as formal verification, simulation-based testing, and 
hardware-in-the-loop (HIL) testing are used to validate DTs against real-world scenarios. 
Assurance methods also include continuous monitoring and diagnostics to detect and address any 
discrepancies between the DT and the physical system. Ensuring high levels of assurance is vital 
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for applications in critical sectors such as healthcare, aerospace, and energy, where failures can 
have significant consequences. 
 
11. Verification, Validation, and Uncertainty Quantification (VVUQ): 

11.1. DT Key Performance Indicators (KPI) 
There is a need for identification of DT KPIs across different applications. KPIs provide a 
quantifiable way to monitor the performance of DTs over time against some predefined objectives 
such as improving efficiency, reducing down time, or enhancing product quality.  KPIs can 
highlight areas where the DT may be underperforming and enable targeted improvements to DT 
models, processes or data inputs. This is crucial for maintaining the reliability of information and 
control actions generated by the twin.  

11.2. Integration VVUQ Practices and DT Deployment  
Uncertainties are inherent in any physical system, and accurately modeling these uncertainties is 
crucial for the effectiveness of DTs. Well-modeled uncertainties allow the DT to capture the 
variability and unpredictability of the real world, providing more reliable simulations and 
predictions. This is particularly important in use cases such as predictive maintenance, where 
understanding the range of possible outcomes can inform better decision-making. Techniques such 
as probabilistic modeling, Bayesian inference, and Monte Carlo simulations are commonly used 
to account for uncertainties. There is a need to integrate VVUQ methods with DT development 
and deployment. By incorporating these methods, DTs can provide more robust and resilient 
solutions across various applications. 

11.3. Propagation of VVUQ across domains 
There is a need for investment in the propagation of VVUQ methods across disciplines. Different 
disciplines often have unique methods for VVUQ. Propagating these processes across domains 
ensures that DTs developed by multidisciplinary teams can be consistently applied and trusted 
across various applications.  

11.4. UQ for DT  
Uncertainty quantification is needed for reliably deploying DTs, especially when high risk 
decisions are at stake. DTs may be used to understand scale-up processes, for example, and reduce 
the risk associated with decisions. Thus, uncertainties in the DT must be properly quantified. This 
includes the quantification of both aleatoric and epistemic uncertainties and their propagation 
through the DT, ideally delineating what part of the total uncertainty should be ascribed to the data 
(aleatoric) and the model (epistemic) including underlying simulations, modeling choices, or ML 
models used within the DT. Depending on the computational expense associated with DTs, 
different UQ approaches must be considered, including multi-fidelity, Monte Carlo, Bayesian, and 
ensemble methods. The outcome of the DT should therefore be quantities that can be used in 
visualization approaches that indicate to the decision maker or control process how much trust to 
have in the DT, and which parts of the DT to attribute the uncertainties to. 

11.5. DT for UQ 
Conversely DTs have the potential to be used to enable uncertainty quantification of the physical 
processes they represent, if research into this is funded. For instance, to understand the variability 
associated with stochastic processes, it is in practice often impossible to create a large ensemble 
of these processes. Here, a DT can enable and significantly accelerate the needed UQ by repeatedly 
executing it for the same state, assuming it represents the underlying physical processes accurately. 
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In the same vein, DTs can be used to execute multiple what-if scenarios that would otherwise not 
be possible to study by experimenting with the real physical processes. 
 
12. Workforce: 

12.1. Cross-Disciplinary STEM Education 
While there is benefit in teaching individual disciplines in separate pillars to hone in on the intricate 
details and enable students to fully understand the fundamentals, more cross-disciplinary classes 
must be taught to elucidate the tight connection between diverse disciplines. These classes would 
enable students to better understand the complexity of systems and systems of systems, allowing 
them to make connections as to how topics learned in one class can be leveraged to solve problems 
in a different discipline. Such classes would also enable students to learn how to engage with non-
experts from other backgrounds, and thus improve their interdisciplinary communication skills as 
well as broaden their horizons with respect to the usefulness of their area of specialty. DTs in 
particular are approximations of complex systems and require the collaboration of experts in 
various fields to be successful and capture all aspects of the physical process under investigation.  

12.2. DT Addition to STEM Curriculums 
DTs are increasingly used in various industries. Integrating DT education into STEM curriculums 
can thus better prepare students for future careers, and equip them with the necessary skills to 
succeed in an increasingly digital world. As DT technology becomes more widely used, regulatory 
standards and compliance requirements are likely to arise. There is a need to reform STEM 
curriculums to include DT education and ensure students adhere to industry standards and best 
practices.  

12.3. DT for Workforce Training 
DTs provide a powerful tool for workforce training by creating realistic and interactive simulations 
of physical systems. These simulations can be used to train employees in a risk-free environment, 
allowing them to practice and develop their skills without the consequences of making mistakes 
in the real world. This is particularly valuable in industries where errors can be costly or dangerous. 
By using DTs, organizations can enhance the training process, improve safety, and increase the 
overall competence of their workforce. Additionally, DTs can be used to develop and test new 
training programs, ensuring they are effective before implementation. There is a need for 
integrating DTs into workforce training processes.  

12.4. Democratization of DT  
There is a need for investment in the democratization of DT technology. Making DT technology 
accessible to a wider audience ensures that more organizations, regardless of size and resources, 
and more individuals, regardless of their circumstances, can benefit from its capabilities and 
career-enhancing capabilities. This promotes inclusivity and fosters a broader range of innovation 
and collaborative efforts.  

12.5. Education on Operating with DTs 
As DT adoption increases across industries, it is likely that system operation will require some 
level of interaction between operators and DT technology. There is a need for education on 
operating with DTs. DT education for operators can ensure their interaction with the technology 
is efficient and allows them to leverage the full capabilities of DTs to monitor, analyze and 
optimize processes.  At the same time, the organizational leadership must be educated about DTs, 
so that they realize the challenges and the great potential of putting DT technology to work. 
  


