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SYNOPSIS 
Digital twin (DT) has been mostly developed for a single function in the literature, limiting its full 
potential in applications. This document introduces an enterprise DT empowered with a layered 
integration of multifunctional models in the built environment. The enterprise DT involves open-
sourced and secure modeling capabilities for non-profit organizations and for-profit companies, 
respectively, so that the national DT framework can benefit all entities. The enterprise DT also defines 
a new concept of the degree of digital twinning (DODT) to a real world by the number of models 
enabled by a common DT platform. This multidimensional DT is a modular architecture in three 
hierarchical tiers: autonomous region, infrastructure asset, and operation system. While the asset and 
system DTs focus on the lifecycle management of buildings and infrastructure as well as systems to 
support daily operations, the region DT addresses diverse modeling approaches for a comprehensive 
management of the built environment. The DODT enables value-driven digital replications of a 
physical twin at different levels. In addition to building information modeling, the enterprise DT 
enables spatiotemporal analysis in multiple scales to couple nonstructural with structural building 
components and connect the built environment to planning constructions. 

Keywords: Smart cities; Digital twin; Degree of digital twinning; Remote sensing; Asset lifecycle 
management; Cyber-physical-social system 

1 INTRODUCTION 
Building and civil infrastructure assets have been managed using a database since 1970 and with the 
aid of Building Information Modeling (BIM) since 1992 for value engineering and as-built 
information. The imperative for embracing digital twinning becomes evident in the aftermath of the 
2007 Minneapolis Interstate 35W Bridge Collapse, a catastrophic event that claimed 13 lives and 
injured 145. This tragic incident underscores the critical need for spatiotemporal analysis and societal 
impact studies, highlighting deficiencies not only in extracting overlooked design information from 
BIM but also in the incapacity of BIM alone to assess the adequacy of bridge members. The urgency 
to adopt digital twin (DT) is amplified as the nation’s infrastructure is aging, demanding more 
frequent condition assessment and maintenance, particularly in the face of accelerating climate 
changes and increasing natural disasters.  

Most, if not all, of prior studies on DT have concentrated on a single function, either 
computational or informational, within a specific discipline such as civil engineering or architecture. 
For example, DT has been viewed as a computational platform for finite element model updating in 
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a probabilistic context and as an information platform for BIM updating. While these advancements 
in their respective research fields are intriguing, the broader impact of these isolated applications of 
DTs is likely constrained.  

This document aims to empower DT with a layered integration of multifunctional models in the 
built environment, creating a cyber-physical-social (CPS) system encompassing buildings, 
infrastructure, and the associated community. Depending on the specific value-driven use cases of 
interest, a DT can be tailored through various facets and phases of a physical twin with the following 
specific objectives: 

1. Develop a rapidly implementable framework of DT modules in hierarchical tiers, 
2. Replicate the real-world construction of partially completed buildings with spatiotemporal 

analysis in multiple scales, 
3. Integrate computational and informational models into a CPS system for asset lifecycle 

management, 
4. Evaluate the structural and nonstructural behavior of buildings under multiple hazards to 

address post-disaster resilience of the affected community, and 
5. Demonstrate and quantify the values of a DT through a straightforward indicator that is easy 

to evaluate. 
 
2 DT FRAMEWORK IN THE BUILT ENVIRONMENT 
 
2.1 DT for Product vs. Asset Lifecycle Management 
The DT concept originated from the modeling of product lifecycle management (PLM) that handles 
a product as it moves through the stages of its life. The lifecycle of a product starts when a product is 
introduced to consumers into the market and ends when it is removed from the shelves. Due to the 
availability of commercial products in large quantities and short term at relatively low costs, the 
integration of multiple products into a new system product can easily be viewed as an intended 
physical prototype. The DT of the system is used to ensure all component products fit together before 
investing a new system product line in a physical factory. This is a valuable design attribute of DTs 
in the era of digital manufacturing in addition to real-time monitoring as envisioned originally. 

On the other hand, asset lifecycle management (ALM) for large-scale buildings and infrastructure 
works differently. A set of strategies (e.g., maintenance, rehabilitation, and replacement) is organized 
and implemented with the intent of preserving and extending the service life of public infrastructure 
assets, such as roads, bridges, and railways. Unlike commercial products, infrastructure assets are 
often unique for both esthetical and functional purposes and require capital investment over a long 
time. As such, the attractive attribute of DTs for product assembly in manufacturing may have no 
equivalence in infrastructure asset management. For buildings and infrastructure management, 
computational mechanics modeling is desirable as their physical and functional conditions affect the 
decision-making of asset management strategies. In addition, using sensing data alone to assess their 
conditions is costly due to their large scale or even impossible for hidden deterioration. Model 
updating with limited sensor data is one of the effective ways to provide the needed condition 
assessment capability. 

The above difference between PLM and ALM determines the way in which DTs are applied 
effectively in the built environment. To start with, the definition of DTs must be modified from those 
targeted at applications in manufacturing. In the past decade, 29 definitions of DTs were used in 
academia, industry, government, and software sources. In the built environment, the term DT has 
been used mainly in three ways: (1) modifying the original DT definition to reflect a realistic digital 
representation of assets, processes, or systems; (2) extending BIM to enable real-world data capture 
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and feedback or completely replacing BIM; and (3) formulating a closed-loop digital-physical system 
for built asset delivery and operation. In general, DT differs from BIM in two distinctive ways: (1) 
two-way digital threads between DT and its represented physical asset, and (2) focus on operation 
and maintenance instead of the entire lifecycle of an asset as BIM encompasses with an emphasis on 
design and construction. The BIM implementation for operation is also different from DT’s. While 
the DT supports the operation of built assets, BIM for facility management focuses compiling 
information of the delivered built asset to support inventory and space management, general upkeep, 
and building services maintenance, which does not result in an accurate replica of the condition and 
performance of the asset. In other words, the BIM is a static representation of a structure that shows 
how it was designed and built. It does not reflect the temporal changes that take place after its 
construction. On the other hand, the DT is a dynamic imitation that is continuously updated to reflect 
the current condition, rate of deterioration, effect of restoration, etc.         

 
2.2 DT Definition in the Context of ALM 
This document consolidates the three uses of DT term in the literature to propose a novel definition. 
In this context, a multidimensional DT is defined as a synergetic, multifunctional, value-added, 
realistic digital representation of an intended or actual real-world asset, system, or process - a 
physical twin in the built environment. As schematically shown in Figure 1, the DT interacts with the 
physical twin in a closed loop with two digital threads. In the physical-to-digital thread, sensing data 
and monitoring information obtained from the physical twin can be used to update the digital 
representation. In the digital-to-physical thread, intervening strategies developed and optimized 
through scenario studies on the DT can help understand the outcomes of multi-faceted decision-
making before they are implemented on the physical twin. On the digital platform, the collected 
multimodal data from sensors and tests will be fused and evaluated to detect, locate, and quantify 
abnormalities as well as to predict the remaining life of the physical twin using advanced deep 
learning-based data analytics.  

 

 
Figure 1 A schematic view of the proposed digital and physical twinning 
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2.3 Degree of Digital Twinning (DODT)  
The state-of-the-art development of the DT technology is primarily focused on digital and physical 
twinning in computational mechanics or information only. A value-added solution expands the 
current single function paradigm to multiple functions. To quantify the values of a DT, the cost saving 
enabled by the DT is the most widely used indicator. However, this indicator requires the collection 
and use of a wealth of information that is difficult to acquire. In this document, DODT is introduced 
as a metric to simplify the estimation of the value of a DT by the number of digital models and feature 
mappings enabled and shared by the common DT platform to address societal needs in multiple 
disciplines, such as engineering, architecture, security, and social and political sciences. In the context 
of determining DODT, digital models are defined as a three-dimensional (3D) representation of 
agents (e.g., person or vehicle) and structures (e.g., buildings and infrastructure), including structural 
and nonstructural components. 
 
2.4 Connections, Hierarchy, and Architecture of Modulated DTs 
The CPS infrastructure concept stands as an innovative and emerging paradigm poised to 
revolutionize the built environment through the delivery of innovative services. It embodies a 
comprehensive framework that seamlessly integrates three pivotal components: cyber, physical, 
and social, as detailed in Table 1. The cyber system provides services to promote economic 
development and improve the quality of life and human wellbeing. The physical system includes 
an engineering-to-operation process to ensure safety, functionality, and resilience. The social 
system describes common traditions, cultures, patterns, and beliefs present in a population group. 
The main component, key function, and performance evaluation criteria of the three systems are 
described in Table 1.  
 

Table 1. Characteristics of the three components in the built environment  

System Main 
Component Key Function Performance Evaluation Criteria 

Cyber 

Internet of Things 
Enable people and objects to exchange data 
via wireless communication and store data 
in the cloud 

Integration tool, security 
management, endpoint management 

Software Provide computational modeling and 
intelligence 

User interaction and support services 

Virtual reality Create the virtual representation of the real 
world integrated with high-fidelity models 

Latency, cybersickness, sense of 
presence, and technological advances 

Physical 

Load bearing 
components 

Support service and extreme loads to 
provide living/working spaces or functions  

Vulnerability, design consistency and 
optimization of elements 

Non-load bearing 
components 

Provide utility facilities and communication 
infrastructure including computers 

Function and security of workspace, 
economic considerations 

Social 
Economics Estimate cost-benefit ratio of major projects Maintenance costs, strategy 

development, and profitability 

Social work Alleviate conditions of people in need of 
help or welfare 

Social and emotional needs, an 
environment of respect and rapport 

 
DT in the bult environment can be hierarchically structured in a simplified form as shown in 

Figure 2, extending from the regional level down to asset and system levels. Depending on the 
security demand, the infrastructure at the asset level can be clustered into two segments: (1) an 
open-sourced segment catering to public buildings and standard infrastructure, and (2) a secured 
segment designed for information-sensitive buildings and critical infrastructure. Furthermore, the 
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hierarchal asset and system structure undergoes evolution throughout the planning, design, 
construction, and operational phases.  

 

 
Figure 2 Temporal and spatial connections and hierarchy of modulated DTs  

 
Many of the current DT research has been focused on information construct. In the built 

environment, however, damage assessment of existing infrastructure and design options of new 
infrastructure are important in the lifecycle management of region assets. Unlike the production 
application strategy in manufacturing, a creation application strategy is thus needed for buildings and 
infrastructure.  

Table 2 presents the system architecture of DTs. It consists of five layers: data acquisition, data 
transmission, model analysis, feature mapping, and users collaboration. First, multimodal data are 
acquired from remote sensing, in-situ sensing, and nondestructive testing. Subsequently, the collected 
data are transmitted to a DT curation and storage facility in the region. Following this, the received 
data are analyzed using informational and computational models. Subsequent to the analysis, the 
features of interest in asset management and regional planning are extracted and presented in mapping 
formats in the DTs. Finally, the processed features are communicated with end users through 
visualizations, dashboards, and interfaces to assist in collaboration and informed decision-making.  

 
Table 2. Five layers in the architecture of DT 

Layer Key Function 
Data Acquisition Collection of data from remote sensing in-situ sensing, and nondestructive testing 
Data Transmission Secure transferring of the acquired data from sensors and tests to the DT platform  

Model Analysis 
Data cleansing and integration to create the virtual representation (or model) of a real world, 
model analysis to transform raw data into meaningful insights and patterns, and predictive 
models that facilitate a deep understanding of object or system’s behaviors  

Feature Mapping Feature extractions and their geospatial distribution in a 3D platform of the DTs 

Users Collaboration Visualizations, dashboards, and interfaces that help multiple users at various security levels 
connect with each other and navigate the DT for controlled data access and manipulation 
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To exemplify the impact of enhanced DT at the asset level, Section 3 presents the two 
foundational computation platforms that couple information and computation modeling as well as 
experimental and computational simulation. Section 4 presents a case study conducted on a 
university campus scale. This case study serves as a tangible demonstration of the practical 
application of DT principles within conventional infrastructure. By focusing on a specific campus 
environment, this study showcases how DT can be effectively employed to realize potential 
benefits and bring about transformative impacts on system, asset, and regional levels. 
 
3 DT AT ASSET AND SYSTEM LEVELS 
While employing computational models is crucial for addressing structural safety concerns, the 
information modeling of nonstructural components becomes necessary for comprehending the 
functionalities of a building system. This is underscored by the fact that the integrity of structural 
components significantly influences the operations of nonstructural elements. Consequently, the 
synergy of computational and informational modeling is essential for the efficient and effective 
management of building and infrastructure assets, with updates occurring nearly in real time. As a 
result, the establishment of two foundational computation platforms is imperative to facilitate the 
implementation of DTs for both computational and informational modeling: 

1. Spatial connection of structural and nonstructural components. Current computational and 
informational modeling tasks are done by two completely isolated technical communities 
using different approaches. For the development of DTs, the two modeling techniques are 
transformed into one simple yet effective computational and informational engine to meet the 
multiple needs in performance evaluation as summarized in Table 1.  

2. Temporal connection between a built facility/environment and a new facility/environment to 
be built in part or entirety. This platform plays a critical role in bridging planning, design, 
construction, and operation of a physical building and infrastructure system. 

As previously mentioned, the forefront of DT technology advancement predominantly centers 
on digital and physical twinning within a single model, such as computational mechanics or 
information-only domains. To enhance infrastructure lifecycle management at the asset level, it is 
crucial to integrate computational, informational, and other relevant models. The following two 
subsections offer practical examples that illustrate the integration of these models.  

 
3.1 Coupling of Computational and Informational Models  
A building consists of structural components that primarily resist loading and nonstructural 
components that support building operation. The nonstructural components are further divided into 
two groups: A and B. Group A includes the pipeline system, hydraulic elevator system, and beams in 
the ceiling system, which are significantly interacted with their supporting structural components. 
Group B consists of the non-beam ceiling system, glazing system, and drywall partitions, which have 
negligible interaction with structural components.  

Figure 3 shows a workflow diagram of the coupled computational and informational modeling to 
determine the probability of damage states and item costs in structural and nonstructural components. 
The computational and informational models are integrated into a seamless platform of fiber elements 
to address both mechanical behaviors (i.e., stress and strain at material levels) using OpenSees 
computational software and functional value properties (i.e., integrity and cost at component or 
system levels) using informational interrelation. To maintain simplicity and efficiency, macro-scale 
models are introduced for nonstructural components and meso-scale models are used for structural 
components. Specifically, the structural components and Group A nonstructural components are 
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represented by fiber elements in a finite element model (FEM) and analyzed under external loading 
(earthquake) to evaluate the building responses and damage states. Group B nonstructural 
components are represented by their informational model for lumped effects to estimate their damage 
states from respective fragility curves based on the overall performance of the building.  
 

 
Figure 3 Workflow diagram in damage and cost analysis in structural and nonstructural components 

 
In Group A nonstructural components, the pipeline system was meticulously modeled to reflect 

the pinching behavior of joints along with their supporting hangers and wire restrainers. Similarly, 
the hydraulic elevator system was modeled to capture primary types of damage that potentially affect 
the performance of chassis, cabin, and main supporting cylinder. The beams in the ceiling system 
were modeled to account for their stiffness and strength effects on the building responses. In Group 
B nonstructural components, the non-beam ceiling system was modeled in a lumped sum for various 
failure modes such as the dislodgement of ceiling tiles, loss of connections along the edges, and 
vertical movement. These types of damage were comprehensively assessed and quantified through 
the utilization of fragility curves. The informational model for Group B nonstructural components 
and the size information of the computational model for Group A nonstructural components and 
structural components include the material data for each component that was used to estimate CO2 
emissions resulting from producing these materials. This quantification was finally employed to 
determine the component costs under scenario damage states. Overall, the coupled computational and 
informational model offers a comprehensive dataset detailing the post-earthquake condition of 
building components and the environmental impact of the materials utilized in the construction of the 
building. 

 
3.2 Hybridization of Experimental and Computational Models 
Buildings and civil infrastructure are commonly instrumented with accelerometers for monitoring 
structural behavior. However, this method has two notable drawbacks. Firstly, the extensive 
processing of acceleration measurements is required to derive data related to structural behavior, 
such as crack width and steel mass loss. This intricate mathematical process often serves as a 
barrier to the widespread adoption of sensing technologies. Secondly, the deployment of 
accelerometers relies on the configuration of an entire structure, making it unsuitable for 
adaptability to partially erected structures or entirely new constructions. 

In practice, all stories of a building are typically built with the same materials using the same 
erection process of prefabricated components during construction. The first story, resting on a rigid 
base, is often subjected to a larger drift than the second and above. Thus, a novel strategy of 
hybridizing experimental and computational modeling is proposed in this study, as shown in Figure 
4. A structure is divided into two groups: experimental members in the first story and computational 
members above the first story. The experimental members are modeled by fiber elements and 
instrumented to measure the load-displacement response of the first story. The material properties 
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extracted from the load-displacement curve are transferred in real time to update the FEM modeling 
and evaluation of the above stories using computational simulations. This hybrid experimental and 
computational treatment is compatible with the sequence of construction of a new building. This 
hybrid modeling strategy bridging existing to new constructions is also more accurate than 
conventional models. For a four-story, two-bay steel building structure, the hybrid treatment proved 
at least 25% more accurate than those simulations even from a post-earthquake calibrated model.  

 

 
Figure 4 Workflow diagram in hybrid experimental and computational modeling and analysis 

 
4 DT AT THE REGION LEVEL 
A case study is presented to unlock potential DT benefits and create transformative impacts on 
asset management and regional planning of a university campus. Figure 5 shows the 3D rendering 
of the campus DT over an area of approximately 500m×500m. 

 
Figure 5 3D rendering of a university campus as a common platform of the DT modules 

 
In this document, the DT expands beyond individual building assets to encompass the entire 

campus, including buildings, green areas, underground utilities, and other components. This broader 
scope is termed the DT at the regional level, emphasizing the scale of analysis. However, a closer 
examination indicates that the DT modules for buildings are at the asset level, while drainage systems 
can be categorized at the system level. This interconnectedness illustrates the hierarchical relationship 
between various levels of analysis as illustrated in Figure 2. 

 
4.1 Workflow to Realize Multiple DODTs and Values 
As indicated in Table 2, the workflow of creating a digital twin of the campus is shown in Figure 
6. It starts with gathering data from various sources such as LiDAR, cameras (infrared (IR), 
hyperspectral, HiFi RGB), IoT sensors, and GIS databases to ensure a comprehensive and accurate 
representation. These data are then securely transmitted through robust protocols to a centralized 
or cloud-based storage platform on which the campus DT is hosted. The LiDAR data is used to 
generate a Digital Elevation Model (DEM) and a Digital Surface Model (DSM), representing 
terrain and surface features including buildings. Building extraction is then performed to isolate 
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structures and their features from the DSM. Subsequently, these extracted building footprints are 
transformed into 3D models using various modeling techniques in the GIS platform. These 3D 
models are carefully integrated, georeferenced, and aligned within the campus DT, ensuring spatial 
accuracy and seamless integration. The models are continuously refined and enriched with real-
time data to keep it up to date with the changing campus. Features relevant to the built environment 
are carefully defined within this model. These defined features enable detailed analysis and 
scenario simulations, presented as DODT, to support campus planning and sustainable decision-
making. The created features encompass a broad array of domains, including infrastructural 
planning, building envelope diagnosis, construction management, responses to extreme events 
(earthquakes and floods), energy usage, development of green spaces, and security. The insights 
obtained from these features are thoughtfully disseminated through intuitive user interfaces, 
enabling stakeholders to navigate and interrogate the campus DT. Furthermore, creating a 
collaborative environment is crucial, encouraging the active involvement of various stakeholders 
and experts to embrace diverse perspectives and expertise, optimizing the campus environment’s 
functionality. 

It is evident from Figure 6 that the data acquired from an individual sensor is utilized to achieve 
multiple DODTs. Furthermore, some DODTs are developed using a combination of data from 
various sensors. Although each sensor’s data are initially used independently, the spatial-enabled 
nature of the multilayer data makes it straightforward to fuse multiple datasets. Combining these 
fused data with fresh sensor data has the potential to create new DODTs. Additionally, given those 
data are collected biweekly to update the DT, the time-series data can track changes and utilize 
artificial intelligence (AI) and machine learning (ML) algorithms to forecast the future. This 
foresight enables predictive maintenance, which represents another novel DODT. 

 

 
Figure 6 Simplified workflow of the campus-scaled DT modules to realize multiple DODTs 

 
Figure 6 also demonstrates the specific values of the campus-scale DT. These values are realized 

through digital modeling and analysis. The output of each model and analysis provides a distinct value 



10 
 

and is thus considered one DODT. A total of eight (1st to 8th) DODTs are presented in Figure 6.  The 
numbering of the DODTs is presented in no particular order or hierarchy; instead, they are listed in 
alphabetical order of their values as presented below: 

1. Building and infrastructure planning,  
2. Condition assessment of building envelopes,  
3. Construction management for efficiency and quality,  
4. Damage/cost scenario studies under earthquake events,  
5. Energy harvesting efficiency,  
6. Environmental planning for flood zone susceptibility,  
7. Master planning for green space development, and  
8. Security protocol development. 

 


