Federal Register Notice: 89 FR 51554, Federal Register :: Networking and Information Technology
Research and Development Request for Information on Digital Twins Research and Development,
June 18, 2024.

Request for Information on the National Digital Twins R&D Strategic Plan

DTE-FS
A Model Based System Specification for Use in Construction of an

Interoperable Digital Twin Earth Framework

DISCLAIMER: Please note that the RFI public responses received and posted do not represent the
views or opinions of the U.S. Government. We bear no responsibility for the accuracy, legality, or
content of the responses and external links included in this document.

DTE-FS

A Model Based System Specification for Use in Construction of an
Interoperable Digital Twin Earth Framework

Version 1.0.1

Corresponding Author

I F)sical Scientist, NOAA NESDIS NCEI

Contributing Authors

v, Physical Scientist, USGS

, Software Architect, NOAA NESDIS NCEI

, Data Access Branch Chief, NOAA NESDIS NCEI

Table of Contents

Table of Contents
Abstract
Introduction
Concept Mapping

Framework Specification
Syntactic Interoperability
Schematic Interoperability
Semantic Interoperability
Legal Interoperability

Requirements Verification
lllustrative Case Study
Reference Implementation

References

Abstract

The earth science community has long been motivated in achieving harmonization of the ways it
represents its domain in order to achieve a comprehensive, confident, current, and shared
understanding of the earth system that is broadly available for democratic decisional use.
Countless efforts across data, semantic, technology, and governance disciplines have been

undertaken toward furthering this goal, and the dream seems closer to being realized than ever.
It is believed that with a proper synthesis of available efforts, a widely accessible and
evolutionary digital twin earth may now be defined, constructed, and managed.

In this work we describe a specification useful in guiding construction of a model-based
framework that enables implementation of a multi-viewpoint, evolutionary, and communally
managed digital twin earth that is represented as a syntactically, schematically, semantically,
and legally interoperable system of systems. A framework implementing this specification is
capable of supporting the management of a contextually rich, user driven, readily accessible,
easily manageable, and entirely flexible model of the earth system that spans its lifecycle,
updates from real-time data of wide variety and source, and supports making, storing, justifying,
and publishing fully traceable decisions made using machine learning, simulation, reasoning,
and other process techniques.

Along with contextual grounding, this work provides a technical validation of the framework
specification through description of a practical reference implementation framework - the virtual
Archival Information Package (VAIP) - that is core to NOAA's upcoming Next Generation Archive
and Access service. A variety of use cases of the digital twin earth framework, both in general
and as implemented in the VAIP, are provided throughout this work to further refine
understanding of specification configuration, utility, and implementation.

Introduction

Represented as a physical system, the earth is incomprehensibly complex, and the scope of
efforts undertaken to measure it, understand it, and explain it, together with the effort-relevant
context questions of who, where, when, what, why, and how, are incredibly rich in character,
utility, and provenance. These humanity-spanning endeavors toward earth-system-based
understandings and actions are fundamentally data-dealing, and in theory, the data they
produce and consume should be readily understandable and widely reusable across various
viewpoints and contexts, thanks to the tireless history of scientific effort expended in careful
development and stewardship of specialized formalisms, vocabularies, lexicons, ontologies,
formats, tools, and techniques that comprise the basis of holistic earth science.

However, while data related to a holistic representation of the earth system may be
interoperable in theory, most implementation efforts made to take advantage of the
interoperability potential toward formation of some shared system have proven to be expensive,
incomplete, rigid, unsustainable, and generally unsuccessful as measured through a holistic
lens. Practically unlocking the promise of universal interoperability for full data access, use, and
dissemination in order to answer or better support queries through data fusion, while
maintaining stable access to that interoperability through chaotic system change, has long been
an end-goal of many in the earth science community, and there have been a number of
approaches to its fulfillment. Some of these efforts have suited some localized domains and use
cases very well under specific conditions and through particular considerations, but a general

achievement of interoperability in earth science, one that allows open access and reuse of data
across disciplines, catalogs, viewpoints, and motivations, that maintains stability through
evolution in character and composition, that enables natural evolution in data governance, and
that scales to meet the enormous process and storage requirements of such an undertaking,
has proven elusive.

While the reasons for lack of success in achieving a more universal interoperability for purposes
of improving decision making based on a shared understanding of the earth system may be
extremely nuanced and contextual, a reading of Conway’s law, which states that “any
organization that designs a system (defined broadly) will produce a design whose structure is a
copy of the organization's communication structure” - gives a reasonable basis of explanation.
Under Conway’s law, if the data produced by an organization through its systems is tightly
process bound to that organization's communication structure, then the type of interoperability
offered between organizations (or between internal parts of an individual organization) is limited
to the types of mutually shared support in terms of both intercommunication and
intracommunication.

In other words, for multiple organizations - or even multiple divisions within a given organization
- to support a basic level of data exchange, they must share an understanding of syntactic
interoperability; if they further want to support data integration between each other, they must
share understanding of schematic interoperability; if they want to further support the ability to
derive meaning from each other’s data in order to enable wisdom-tier decision making, they
must share an understanding of semantic interoperability; and if they want to be able to discover
and reuse each others data at all, they must share understanding of legal interoperability.

This multi-faceted view of interoperability, formalized in the Group on Earth Observations (GEO)
data management principles and guidelines, illustrates why general interoperability has proven
to be so difficult in a scientific domain that is strongly characterized by the variety of
independent efforts; at every interface boundary between organizations, defined by
communication structure, there are multiple hurdles to negotiate and manage in terms of
communication structure normalization between systems.

To help ground the communications issue and the value proposition of overcoming it, a quick
examination of practical users and uses within the broader earth science organization produces
an unsurprisingly complex panorama of scenarios. Financial institutions making investment
decisions, retailers optimizing logistics, NOAA setting fisheries limits, state DEQs issuing
environmental permits, USDA predicting crop yields, US Census forecasting population
migrations, NASA planning satellite launches, archaeologists looking for dig sites,
environmentalists coordinating pollution cleanups, utilties predicting drought, insurers providing
hazard insurance, oil companies looking for drill sites, developers looking for build sites,
biologists looking for new species, governments deciding on national policies, and individuals
planning a camping trip, are all completely valid and significant executive-focused use cases of
a physical representation of the earth system, and each represents a traditional organizational
stovepipe (or collection of stovepipes) in terms of interoperable accessibility. Each also

represents its own rich set of insights, ideas, tools, techniques, and collected data that, if
available for shared use, would at the least enable synthesis of a much more complete physical
representation of the earth system in terms of, among other metrics, resolution, performance,
and accuracy.

Under Conway’s law, then, the ground truth domain complexity in terms of practical
communication structures makes it clear that while earth science is fundamentally interoperable
in terms of its physically described foundations, making practical use of that interoperability is
limited by the practical communication-related incongruities assumed by its many
implementers.The significance in overcoming these incongruities is in eliminating them as the
primary limiting factor of how good any practical physical representation of the earth can be,
toward an ultimate purpose of allowing all users of the representation to improve their decision
making.

Based on this view, with respect to our interest, we can define our problem boundary as a set of
axioms. We propose that

e Axiom A - Organizations and individuals (defined broadly as ‘users’) contribute to and
study the earth system to answer questions and make decisions for reasons that are
meaningful to certain other users.

Axiom B - The users, questions, decisions and reasons are all infinitely variable.
Axiom C - Users may greatly improve their own decision-making confidence, capacity,
and capability due to improved model capability via shared representation.

e Axiom D - Achieving a shared representation of users is limited by the communication
interfaces they share.

e Axiom E - Issues with communication interfaces may be defined and addressed in terms
of classified interoperability.

Using these axioms, a restatement of the thesis of this work in terms of relevant context
questions is possible. In these terms, our thesis may be defined as

e What we want to achieve (a digital representation of the physical earth that is complete,
efficient, and accurate)
For who we want to achieve it (users of the representation)
The reason why we want to achieve it (to improve user decision making about the
physical earth based on the representation)
When we want to achieve it (for the length of use of the representation)
Where we want to achieve it (on user infrastructure)
How we can achieve it (by enabling interoperability between users)

The primary focus of this work will be in deriving and describing specification for the how, by
determining requirements given defining the what, why, when, and where.

Concept Mapping

What we have defined as our primary concern may be readily understood as an attempt to
support application of the concept of a ‘digital twin’ to the earth system. A digital twin is
commonly defined as

“a virtual representation of an object or system that spans its lifecycle, is updated from real-time
data, and uses simulation, machine learning and reasoning to help decision-making.” It is
usually considered implicit that in this definition, ‘decision-making’ refers to decisions about
improvement of the object or system itself.

The concept of a digital twin is not new, having a long history of use in industrial settings
including automotives, automation, manufacturing, energy, logistics, and utilities. Any system
that uses remote sensing data to represent and make decisions about itself may benefit by
being modeled as a digital twin. Functionally, digital twins are primarily defined by providing a
system with capabilities that include

Operations optimization via simulation and monitoring

Predictive maintenance recommendations based on holistic or targeted analysis of
system properties

Anomaly detection based on historical trend reliant models

Fault isolation via reasoned root cause analysis

Applying our boundary value axioms to the basic definition of a digital twin, we might specify a
digital twin earth (DTE) as

“a virtual, dynamic, up-to-date, physical representation of a multi-user earth system of systems
that enables making decisions about the earth through the use of process techniques including
simulation, machine learning, and reasoning.”

We know through Axiom D that communication structure is the defining feature of coherence in
a system, and through Axiom E, that communication structures can be defined in terms of
distinct interoperability focus. Our DTE may then be defined by the syntactic, schematic,
semantic, and legal communications structures that it relies on. Given the existing entrenched
communications structures of intended DTE users, it is not practically feasible to construct a
coherent and fully user supportive system from the top down. Our DTE must therefore be
supported by a set of portable communications structures that exist independently of any user
system. This leads to construction of a statement on framework methodology.

e Framework Methodology - In order to support a holistic DTE, we must construct and
provide a portable interoperability-model framework (DTE-F) that supports all required
DTE functionalities in a manner compatible with existing communication structures of the

systems owned by all intended DTE users through implementation of a Digital Twin
Earth Framework Model Specification (DTE-FS).

Framework Specification

Syntactic Interoperability

Under our methodology constraints, if we imagine our user systems as a set of independent,
uniquely identifiable nodes in global DTE space, our DTE-F may be conceptually modeled as a
set of bi-directional connective edges between them. If we then apply our understanding of user
systems as collections of earth-related decisional processes (Axioms A and B), we can improve
the correctness of the initial model by requiring DTE-FS to model connections between user
processes directly rather than their parent systems. This leads to the first specification
requirement:

e DTE-FS Requirement 1: A DTE-F implementing DTE-FS shall provide model-based,
schema-standardized, machine-readable access and control interfaces to DTE
processes for the purpose of enabling universal syntactic interoperability.

Stated another way, this requirement says that by holding process as a space-spanning
concept, DTE-FS fundamentally supports the construction and management of process-oriented
frameworks, and DTEs constructed through a DTE-F will rely on process as the fundamental
representation dimension supporting each aspect of interoperability. By enforcing exposure of all
control and access of processes through schema-standardized machine readable interfaces,
this requirement provides the foundation for a capability that enables a general
process-to-process syntactic interoperability, while simultaneously supporting the non-functional
architectural goals of general scalability through distributed ownership and a flexible (i.e.,
asynchronous-capable) communication protocol.

Practically, we may understand this requirement as addressing the aspect of communication
structure concerned with making requests and returning responses, in a way that uses a
standard vocabulary and structure, so that we may construct and pass information between
distributed nodes completely, asynchronously, and contextually.

To illustrate how this may look, we can refer to the MessageAP! process specification, which
uses the concept of a top-level session container, similar to a document object model (DOM),
to structure and organize requests, which in turn consist of declarative and structured records
and flow conditions. Content-complete sessions are delivered to remote processors, where they
are parsed, initialized, runtime processed, and returned to the original caller as a packet of
records, rejections, and original request reference.

The DOM foundation of this pattern allows for query, construction, evaluation, validation,
and execution of sessions at-a-distance by humans or machines through a standard API and
also provides an easy basis for persistent storage of the workflow for full provenance and reuse.

Further, this syntactic interoperability approach is reliant on complete encapsulation of whole
immutable requests and enables a concurrent processing model for achieving horizontal
scalability across DTE system users. This type of concurrent processing has been described
and leveraged in Communicating Sequential Processes (CSP), as well as various process
calculii, including the Actor Model, to support, among other things, full linear traces of
intra-process vocabulary changes as well as process-side request throttling.

Technologies covering syntactic support in this way are widely available, generally being
classified as workflow management system (WMS) related tools. While not strictly required,
WMS tools which implement fully declarative information model based systems that pass full
instruction sets via text may be best suited for fully meeting the syntactic requirement in the long
term. The Onyx Platform, TaskAPI, MessageAPI, Argo, Amazon Web Services (AWS) Step
Functions, by being fully declarative and model based, provide the ability to self-describe and be
constructed at-a-distance, while enabling full replay and providing static, well known bounds on
their control interfaces. Systems that rely on deeply ingrained, non-model-based coded
instructions and rules, such as NiFi, Metaflow, Airflow, and Flyte, may not continue to meet the
syntactic interoperability requirement in the long term.

Schematic Interoperability

While our first requirement is sufficient for ensuring support of foundational syntactic
interoperability across our DTE representation, it does not address how to achieve
interoperability in terms of schema, and we must address this in our framework model. Toward
this end, we can first refer to the definition of process as “a series or sequence of operations,
tasks, and/or procedures performed on something in order to change or preserve it”.

This definition says that every one of the DTE processes that we must support are made up of
smaller, purpose-oriented tasks (subprocesses), linked together in specific ways. Specifically,
process tasks are classifiable in terms of their contextual process purpose - either input, identity,
transformation, or output - and each is constrained in terms of allowable types of downstream
connections. Taken together, these facts lead to the DTE-FS requirements two, three, four, and
five.

e DTE-FS Requirement 2: A DTE-F implementing DTE-FS shall provide model-exposed
process structure in terms of DTE subprocess tasks.

e DTE-FS Requirement 3: A DTE-F implementing DTE-FS shall provide model-based,
schema-standardized, machine-readable access and control interfaces for DTE tasks.

e DTE-FS Requirement 4: A DTE-F implementing DTE-FS shall declaratively classify the
purpose of every DTE process task as one of acquisition, identity, transformation
(considered to include classification), or delivery.

e DTE-FS Requirement 5: A DTE-F implementing DTE-FS shall enforce constraints on
allowable downstream DTE task connections based on type.

o 5a. Input tasks must connect downstream to identity tasks

o 5b. Identity tasks must connect downstream to transformation tasks or output
tasks

o 5c. Transformation tasks may connect downstream to transformation tasks or
output tasks

While these specified requirements do not on their own appear to support a general schematic
interoperability of processes represented within the DTE, they do lay a needed foundation. To
complete the picture, we must combine them with a functional understanding of tasks. In a
functional view, a task takes some schema-structured input, does some arbitrary processing,
and produces some schema-structured output. In this view, for any given process task, the
computational workflow that produces some output is coupled with output structure, and both
must be available together for complete contextual understanding of a given process definition
or execution. Additionally, in order for a machine to automatically connect a given task to one
downstream, the output structure of the first task must be known to the second so that it, or
parts of it, may be used to drive the workflow of the downstream task automatically. This
reasoning leads to the final requirement set related to content structure.

e DTE-FS Requirement 6: A DTE-F implementing DTE-FS shall provide standard,
machine-readable access and control interfaces for all DTE processes and tasks in
terms of coupled workflow and persistence structure.

e DTE-FS Requirement 7: A DTE-F implementing DTE-FS shall structure all DTE
processes so that a given process may be executed to completion by syntactically
interoperable submission of a complete declarative, schema-standardized
machine-readable map of valued fields and conditions.

e DTE-FS Requirement 8: A DTE-F implementing DTE-FS shall structure all DTE tasks
so that a given task may be completely machine-executed toward populating a known
output storage structure.

Taken together, Requirements 2 through 8 provide the ability for complete automation of
process construction, process execution, task composition and validation, task execution, and
provenance analysis, and this ‘single-pane-of-glass’ approach reduces schematic
interoperability to a problem of providing up front values of known key-value pair fields and
conditions through a uniform interface.

To illustrate this concept in practice, returning to the MessageAPI process specification, the
previously described session requests provide a standard schema pattern for a request record,
so that it may be composed purely in data and submitted completely for processing.

The record pattern requires provision of a flat set of fields, each needing specification of field id,
type, value, required status, and optional metadata; as well as a similar flat set of conditions
used for data flow routing. The record then requires each field to be containerized in some
custom pattern or patterns, which is referred to as a contextual identity container, allowing
conditions to make determination of inclusion. Each container is then potentially referenced in
some arbitrarily nested and/or branched pattern of transformations and/or classified labels, each
stage of which specifies its own output field set. All computational paths are ultimately referred
to within a connection to a defined endpoint that defines what its output records are.

When a session is initialized by a processor, any construction time logic for individual tasks,
including transformation context or endpoint connection, are executed to create the session
context; field and condition values are then applied as a set to create and submit a request of
one or more records; and endpoint connections drive processing in a lazy way, first through up
front validation of task-output-to-task-input schemas, and then while during each computation
iteration. At each stage of its processing, if a task fails, it is added as a rejection for return and
explanation to the original caller that lists specific fields and reasons for failure.

Through this method of coupling task workflow and output in a schema-normalized way through
record-based sets of fields and conditions, defined generally by DTE-FS requirements 2 through
8, schematic interoperability across processes is enabled generally for any classifiable task.
Driving a process becomes a matter of valuing known fields and conditions, and driving
individual tasks becomes a matter of mapping fields needed to drive a task workflow with
generated and potentially persisted output of upstream tasks. Readers should note that this
section, particularly in light of requirement 6, provides the described level of schematic
interoperability both inter-process and intra-process.

As a final illustration of the use of schematic interoperability in the terms laid out in this section,
imagine a DTE process that receives raw station temperature measurements for some given
location over an hour time, does a time-interval average of them, validates the average against
known seasonal expectations based on historical measurements, and then packages validated
ones as a NetCDF file for reporting.

In our defined framework, this process may be modeled as consisting of five distinct tasks - An
input task, which takes station measurements; a first transformation task, which does some
aggregation based time-interval average; a second transformation task, which does some
validation; a third transformation task, which converts file type into NetCDF format; and a final
output task, which sends knowledge of the process execution to some endpoint. Each of these
tasks in the process has its own functional workflow and output schema. By requirement, the
process itself defines an acyclic digraph of process order, and a final output schema. In order to
construct the process within the framework, the tasks must first be linked together.

Assuming a known workflow and output structure is already known for each, they can be linked
together automatically, matching input requirements for a given task workflow to output from the
previous task, and applying general constraints of the system in terms of classified task type. As

an example of this, the precipitation task might get raw measurements as strings, in which case
there might be a workflow key called ‘precip value’, and one called ‘precip units’. This task might
specify as its output structure a single JSON map of precip value and structure, called ‘precip
object’.

The next task, the aggregation transformer, might take as a workflow input value a list of ‘precip
objects’ and a ‘historical file location’. Since this ‘historical file location’ is not provided by the
output of its upstream task, it will be required to be provided in the flat field set as a model
parameter to begin execution of the overall process, and the machine can inform its caller about
this fact. The NetCDF transformation task might use a ‘NetCDF template’ field, and a
‘normalized precip set’ in its workflow. Again, if the NetCDF template field isn’t provided as
output from the upstream task, it will be called out as a flat-map input requirement for use at
session initialization.

Careful reading of this process approach may glean that while it provides a generalized strategy
for schematic interoperability, there are some shortcomings - i.e. other than key to key matching
for field values, how would a machine know that one key’s content actually matches with its
target? This leads us to the derivation of semantic interoperability related requirements for our
DTE-FS.

Semantic Interoperability

While the DTE-FS as described thus far covers support of both generalized syntactic and
schematic interoperability, it has not addressed the critical capability of semantic interoperability.
Semantic interoperability between two nodes with respect to some topic is broadly defined as a
shared understanding of meaning of that topic. To enable interoperability in this way, we must be
able to provide the ability to understand the context of a thing, what kind of contexts a thing
might belong to, reason about whether two things are the same, if they are different, if they are
compatible, in what ways they are compatible, in what ways they are different, if they are
related, if they are completely different, and so on.

The study of knowledge graphs has been concerned with this type of interoperability for many
years, and has made great strides in its enablement, in terms of formalisms, tools, and
techniques. The concepts of vocabularies, lexicons, thesaurus, knowledge organization
systems, and ontologies in particular are well fleshed out systems for addressing semantic
interoperability. Ontologies are patterns of understanding about some topic, using hierarchical
classification of concepts and relationships between them to allow patterned storage of data and
inference based on new data.

It may seem, then, that an ontology or defined vocabulary is the best way to approach providing
interoperability support within the DTE-FS, and this is the approach that is taken. However,
when talking about generalizing semantic interoperability between arbitrary DTE users, in order
to support semantic interoperability across an enormous variety of highly specialized use cases,
it also becomes obvious that a single ontology by itself is not enough - because, to support

semantic interoperability across unbounded and unknown use case, an ontology by itself would
grow unbounded - thus rendering the system essentially unstable and unsustainable. So, while
the concepts of ontology are indeed foundational to addressing semantic interoperability, they
must be augmented with further ceremony in order to meet the requirement in letter and spirit.

To do this, we combine a number of complementary concepts to ontology. First we introduce the
concept of ‘fuzzy semantic interoperability’ via prototype patterned archetypes. In this
approach, a bounded and flexible reference model (i.e., one that has some support for recursion
and composition) that spans the desired domain is selected and converted into ontology. This
reference model derived ontology then forms the foundation for allowing DTE users to build
user-specific archetypes, also referred to as empty human-labeled structures. These structures
are unvalued instances that derive from the small class set of the reference model ontology,
providing intrinsic interoperability, but they are also human readable and easily composable,
thanks to their open ended human labeling.

A quick understanding of the utility in this may be understood by this short example - if two DTE
users both use the concept of a ‘granule’, but use their own properties to define the structure of
the granule (i.e., one requires a DOI, the other requires a UUID and a DOI, one requires a
checksum, the other requires two checksums, one holds the file directly, one holds a link to the
file, and so on), each user may define the concept of granule in a very specific and highly
customized way, but do it based on the same semantic ontology - so that either user, or another
DTE user entirely, may discover both types of ‘granule’ together.

In order to support the requirements of the storage structures described for use in the schematic
interoperability toolset, archetypes defined within the DTE-FS must support one of the distinct
task types of input, identity, transformation (including classification), or output.

e DTE-FS Requirement 9: A DTE-F implementing DTE-FS shall provide a small, static,
space-complete, and flexible classification-oriented reference model derived ontology for
use in defining DTE process task produced structures.

e DTE-FS Requirement 10: A DTE-F implementing DTE-FS shall enforce that all DTE
process tasks define their process output in terms of partially valued archetypes, known
as process-specific templates, that derive directly from ‘fuzzily interoperable’ archetypes,
also known as unvalued human labeled structures, which in turn derive from classes in
the implemented DTE-F reference model ontology.

e DTE-FS Requirement 11: A DTE-F implementing DTE-FS shall enforce that all DTE
process tasks define their output archetype in terms of the relevant supporting archetype
class, either input, identity, transformation, or output.

Furthermore, as transformations likely involve field set modifications for their output, the generic
archetype for transformation must support use of arbitrary ontology to contextualize identified
task outputs. To accommodate this need we introduce the second concept needed to augment
ontology in support of generalized semantic interoperability, which is contextualized knowledge
of data. To do this, we must require that our reference model ontology support rich

contextualization of the data it holds - it must be able to describe data in terms of its
relationships to potentially rich networks of structural, semantic, and other representation, it also
must be able to describe data in terms of its packaging and preservation information.

e DTE-FS Requirement 12: A DTE-F implementing DTE-FS shall provide accommodation
for process transformation tasks in supporting ontological restructuring of upstream task
output within arbitrary and machine-accessible context in terms of content and character.

What this means practically is best illustrated through example. Going back to the previous
section and our discussion on schematic interoperability, we have a task in our sample process
that produces NetCDF files. This is a transformation task, so it must be supported by an
archetype related to transformation. If the transformation output archetype has a structure of two
fields, one the key label of ‘netCDF file’, and one with label of ‘netCDF template’ the archetype
must include links to or direct text that describes that this is a known ontology; what URI to load
the ontology namespace from; where to find the schema; potentially what fields in the netCDF
file schema mean; etc. Through this approach, we might support any known ontology, within our
reference model ontology, and also, through the use of modern tools like NLP, enable machine
access to understanding and parsing of arbitrary context.

Another common use of this approach to semantic interoperability within the DTE is in a
contextual assessment, or qualified quality control, of given identified entities. As a distributed
framework supporting arbitrary users, there can be no guarantee of the quality of something that
is produced, other than through the lens of contextual certification. For example, there may be
100 DTE users that produce rainfall data of varying qualities. If another user needs to use the
output from each, but weight each output differently, they may first run each through an
assessment transformation characterized by an evaluative metric space structure - e.g.
confidence score, accuracy, precision, etc. alternatively, a model or simulation transformation
may be run with and without each data in order to determine these scores and then use them in
a weighted or considered way depending on context.

In any case, the result is the ability for multiple users in multiple contexts to provide a ‘goodness’
type score, in a specific metric, and make that score context available to other users for
discovery and use along with the originally identified data. Imagine if NOAA or another
authoritative agency were to use crowd sourced data in a product, they might certify it first
through some quality score, and then other users could use semantic contextualization for
search during data mining.

This approach also provides a mechanism for constructing and feeding multiple semantically
discoverable and interoperable viewpoints to monitor the system health of the DTE itself, in
terms of security viewpoints, integrity viewpoints, performance viewpoints, and others.
Viewpoints may represent parameter sets and machine-accessible usability context to feed
graphical user interface (GUI) analysis tools, multi-layered inference ontologies for inference
based reasoning, and others.

There are several generic ontologies that may meet the requirements laid out in this section,
including OAI-ORE, PROV-ES, OAIS-VAIP, and OpenEHR. This is not an exhaustive list of base
level ontologies that may support the requirements, and there are several existing standards
and ones in development that may be provided by a DTE-F to meet the needs of a given DTE. It
is strongly recommended, but not required, that any DTE-F implementing DTE-FS use existing
ontologies based on standard, self-contained, and space complete reference models. While a
DTE-F backing ontology may be constructed ad-hoc from various reference models or on a
case by case basis, this strategy may result in violation of requirement and invalidation of the
DTE over time, if the ontology is found to be unbounded, space-incomplete, or otherwise
incongruous with evolutionary growth of the specified domain.

Legal Interoperability

The last interoperability toolset targeted for support by the DTE-FS framework is that of legal
interoperability, which in our context deals with whether and/or what level of access a given DTE
user process has to another DTE user process, its tasks, and/or its data. This is particularly
important to address in the holistic DTE that is envisioned for support, as not every user of the
system might want to make its processes and process related data available to every other user
in the same ways. There are two aspects of legal interoperability control that are considered by
DTE-FS - first, the ability to discover rights, and second, the ability to enforce access rights.

The ability to discover and assess access rights, including the method of requesting
accommodation via those access rights, should be handled through use of archetype
augmentation within the semantic framework, and thus we have a new requirement for the
semantic framework to be able to handle management of attached access rights information on
both processes themselves and all of their content. This seemingly small modification to our
reference model requirements has rather broad implications for our system, as it now places an
additional constraint on the choice of reference model, as well as a less obvious constraint on
processes themselves - as with this additional requirement, processes can now be inferred to
need their own archetype that fits within the reference model.

e DTE-FS Requirement 13: A DTE-F implementing DTE-FS shall require that all DTE
assets described by an archetype-derived storage structure include easily accessible
access rights.

e DTE-FS Requirement 14: A DTE-F implementing DTE-FS shall require that DTE
processes be described through an archetype derived from the implemented DTE-F
reference model ontology that includes access rights information.

e DTE-FS Requirement 15: A DTE-F implementing DTE-FS shall require that DTE
processes described by an archetype derived template be provided standard,
machine-readable access and control interfaces.

The access rights that describe the asset they are attached to should provide a
machine-readable representation of the specific access rights policy, in terms of whether or not

a particular hopeful accessor can retrieve them, and then if allowed, provide machine-readable
instructions to what ways the accessor should go about requesting the retrieval. This may
involve, for example, a link to a token-request process that takes a user id and some password,
generates a time-sensitive token, and then enables this token for use in running the process.

e DTE-FS Requirement 16: A DTE-F implementing DTE-FS shall require that access
rights attached to a given DTE asset provide machine-readable capability for
automatically using assets in the ways they are allowed.

Requirements Verification

With the basic framework derivation complete, it is important to first return to the DTE functional
definitions to assess whether or not all of the functionality that defines a DTE is supported by

the specified requirements model. We do this now by first describing the functional requirement,
then assessing if and how it is supported in turn, adding new DTE-FS requirements as needed.

- Functional Support Requirement: Operations optimization via simulation and
monitoring.

- Simulation usually involves running a known model many times with ensembles
of input data, according to some distribution of one or more model parameters, in
order to determine a range of outputs. Important for simulation are the ability to
trigger the same process model with different input; the ability to store output
alongside given input conditions; the ability to deliver model output to multiple
visualization tools; and the ability to deploy a new version of a model for
simultaneous testing in the case that operations is changed as a result of
simulation.

- Monitoring usually involves analysis of many user-consumable insights that live
fairly close access to raw data. Important for monitoring support are the ability to
handle data availability in real-time; the ability to transform data for use by
analysis and visualization tools; and the ability to send alerts in the case of issue.

Based on these descriptions, our specification may be missing requirements related to
guarantee of streaming data acceptance, support for online models, versioning of models and
associated process and task control context, and the ability to feed visual and other analysis
tools within the model.

To guarantee streaming data support, we should add more stringent constraints to our existing
requirements of asynchronous data passing to ensure that DTE users are always available to
take requests and serve responses to other users of the DTE, and in the case of brief
unavailability, must recover and catch up quickly in processing requests and serving responses
exactly.

e DTE-FS Requirement 17: A DTE-F implementing DTE-FS shall require that all DTE
users accept and process all syntactically complete and legally acceptable process
requests in a timely way.

e DTE-FS Requirement 18: A DTE-F implementing DTE-FS shall require that all DTE
users immediately return a response to requesting users that contains tracking
information about the request and status of the request.

e DTE-FS Requirement 19: A DTE-F implementing DTE-FS shall require that all DTE
users recover quickly in the case of brief unavailability.

To guarantee support for online models, we should add a requirement that online models be
declared as such within their task context and that online models persist information about state
change.

e DTE-FS Requirement 20: A DTE-F implementing DTE-FS shall require that all DTE
process tasks containing malleable models declare the model as malleable as part of the
archetype based task context container derived from the DTE-F reference model
onlology.

e DTE-FS Requirement 21: A DTE-F implementing DTE-FS shall require that all DTE
process tasks containing mutable models persist any state changes made to them within
an archetype derived task context in a way that makes them completely machine
recoverable.

e DTE-FS Requirement 22: A DTE-F implementing DTE-FS shall require that all DTE
process tasks containing mutable models make any previous state changes
discoverable, accessible, and completely recoverable to any legally authorized user of
the DTE.

To guarantee support for versioning of models and their context control structures, we should
require that all task and process deployments persist and provide ready access to their state
history.

e DTE-FS Requirement 23: A DTE-F implementing DTE-FS shall require that all DTE
processes and DTE process tasks persist all deployments as versions within an
archetype derived task context in a way that makes them completely machine
recoverable.

e DTE-FS Requirement 24: A DTE-F implementing DTE-FS shall require that all DTE
processes and DTE process tasks make all versions of themselves discoverable,
accessible, and completely recoverable to any legally authorized user of the DTE.

To guarantee interoperability and support for visual tools, opinionated catalogs, and other
analytical tools, we should require that visual tools and other DTE-aiding endpoints be
represented through archetype by the DTE-F provided reference model derived ontology.

e DTE-FS Requirement 25: A DTE-F implementing DTE-FS shall require that all DTE and
DTE-adjacent tools related to or assisting in DTE decisions, including visual tools,

access tools, opinionated catalogs, and other analytical tools, be persisted as DTE-F
archetype structured entities.

DTE-FS Requirement 26: A DTE-F implementing DTE-FS shall require that all
DTE-persisted archetype structured entities be complete and available for complete
machine configuration.

DTE-FS Requirement 27: A DTE-F implementing DTE-FS shall require that all
DTE-persisted archetype structured entities be machine findable, accessible, and
controllable in all ways they are used.

Functional Support Requirement: Predictive maintenance recommendations based on
holistic or targeted analysis of system properties
- In an earth system, properties may be user-specific parameters that include

things like pollution levels, water levels, drought indeces, and others. Holistic
analysis requires synthesis of various sources, which in turn requires
identification and aggregate transformation. Targeted analysis may or may not
require synthesis or splitting data apart, also requiring identification and split or
join transformation. Both analyses rely on historical information and searching
across data persistence. Predictive maintenance recommendations based on
either of these analyses requires further transformation and delivery of results
and recommendations.

Existing DTE-FS requirements cover basic machine-readable semantically interoperable
information discovery, synthesis and splitting via transformation. Existing requirements also
cover preservation of historical information about transformation models via versioning.
However, new requirements must be added in order to cover historical analysis completely, as
well as to ensure delivery of machine-readable and semantically interoperable results and
recommendations.

DTE-FS Requirement 28: A DTE-F implementing DTE-FS shall require that all system
properties of interest be persisted as DTE-F archetype structured identified entities so
they may be machine or human discovered, accessed, and contextually linked to other
DTE entities through DTE processes.

DTE-FS Requirement 29: A DTE-F implementing DTE-FS shall require that all
DTE-produced archetype structured process output that relates to any system properties
of interest be persisted and contextually linked to the system property of interest in a
machine discoverable and accessible way.

Functional Support Requirement: Anomaly detection based on historical trend reliant
models
- Modern anomaly detection generally relies on the use of machine learning
transformation models to assess new real-time data against historical trend and
expectation data. The model may require online updates through the integration
of new data into the model. When anomalies are detected, notice may need to be
sent as alerts to one or more recipients.

Existing DTE-FS requirements cover machine interoperable model contextualization, online
model handling, historical versioning and version recovery, historical persistence of output data
for retrieval, and version replay. Alerting behaviors are notionally covered, however existing
requirements may be augmented to support complete knowledge of alert targets.

e DTE-FS Requirement 30: A DTE-F implementing DTE-FS shall require that all targets
of DTE outputs for use in decisions be constructed and persisted as archetype
structured identity entities so that they may be machine or human discovered, accessed,
and contextually linked to other DTE entities through DTE processes.

- Functional Support Requirement: Fault isolation via reasoned root cause analysis
- Root cause analysis requires full provenance tracing in terms of process
workflow. In an earth system context, fault isolation might deal with attempting to
determine the reason why some parameter or metric was affecting the earth in
some way, which requires holistic system searching, process synthesis, and
semantic inference.

Existing DTE-FS requirements cover most requirements for fault isolation capability, including
historical tracking of process and task, contextualized semantic discovery for inference, and
process synthesis tracking. Requirements may be augmented to more specifically support
holistic system searching.

e DTE-FS Requirement 31: A DTE-F implementing DTE-FS shall require that all DTE
archetypes be readily human or machine discoverable, accessible, and usable in a fast
and efficient way.

e DTE-FS Requirement 32: A DTE-F implementing DTE-FS shall require that all DTE
templates, derived from DTE archetypes, be readily human or machine discoverable,
accessible, and usable in a fast and efficient way.

e DTE-FS Requirement 33: A DTE-F implementing DTE-FS shall require that all DTE
entity individuals, derived from DTE templates, be readily human or machine
discoverable, accessible, and usable in a fast and efficient way.

Practically, this may mean that federated archetypes, templates, and entity individuals be
hierarchicaly catalogued by a DTE user, potentially in many layers, within their own archetype
derived template or entity individual so that search may quickly find and drill down areas of
interest in a concurrent and parallel way.

With these final derivations, the DTE functional requirements are verified, and the basic DTE-FS
requirements set is functionally complete. However, it is understood that practically meeting so
many requirements may be difficult during implementation, and so we introduce to DTE-FS two
additional requirements, coherent with the core set, that serve to guide architectural and design
implementation.

e DTE-FS Requirement 34: A DTE-F implementing DTE-FS shall require that all DTE
users implement a small, static, DTE-F interoperability-model-complete and fully DTE-FS
requirement-compatible API, in whatever language or technology required for that user.

e DTE-FS Requirement 35: A DTE-F implementing DTE-FS shall require that all DTE
users interact with the DTE solely through the user-specifed and implemented API,
building any additional interactive tools on top of the API itself.

By enforcing this API requirement, DTE-F will assure that users enable better understanding of
the data model and compliance with the specified requirements in a sustainable way.

lllustrative Case Study

To better illustrate the goals, use, and utility of what we are proposing, it is useful to walk
through practical examples. Toward this end, we may first consider the Virginia Department of
Mines, Minerals, and Energy (DMME) as a user of our DTE. Through Surface Mining Control
and Reclamation Act (SMCRA), Clean Air Act (CAA), and Clean Water Act (CWA) authorities,
with oversight by the EPA and OSM, DMME owns a system (process set) responsible for
making decisions about whether or not to issue, revoke, or modify energy permits, including
natural gas and coal mining permits, in the state of Virginia.

Permitting decisions made by DMME are composites of multiple smaller analyses and
predictions (tasks) about water quality, benthic health, hydrologic impacts to wetlands, and land
use management, among others. Each of these individual analyses may be based on any
number of complex and highly customized algorithms reliant on synthesis of voluminous and
diverse real-time and historical experimental data. Much of this data is collected by DMME
directly, by hand or automated sensor, stored and managed within a database according to
some custom structure.

In the water quality process alone, there are multiple instream, non-point, groundwater,
precipitation, cumulative hydrologic, and total maximum analyses across dozens of parameters
done based on data from multiple real-time input data flows. The fundamental output of these
analyses, a singular decision on whether or not to allow or enable some wide-scale change to
the earth, is determined by the quality of the analyses which are ultimately dependent on the
models and raw data they have access to. Improving the decision, therefore, is reliant on
improving the analyses, in turn reliant on improving the models, in turn reliant on the availability
and quality of raw data. Discovery, construction, and/or management of these decisions and
associated analyses, models, and data is also heavily dependent on the subject matter experts
(SMEs) in staying abreast of current implementation and new developments; this is generally a
slow, expensive, and uncontrolled process.

Let us now consider a second user of our DTE, NOAA, which may be thought of as a large and
multi-system (process) owning DTE user. One of the systems (processes) NOAA owns is
real-time collection, quality control, product synthesis, and analysis of a remote sensing pipeline
(process) for creating and serving authoritatively certified precipitation data. This pipeline

(process) relies on one and five minute report output collected by individual sensors that are
multi-agency (multi-DTE-user) owned and operated as part of a national in-situ sensor network.
Sensor data are collected and combined with other data to perform internal quality control, and
the products that are produced are ultimately published for use by other DTE users through
several types of interfaces in various formats to make decisions with broad international legal
and regulatory ramifications. Similar to DMME, NOAA relies on multiple algorithms of various
nature to maintain the precipitation pipeline, including multi-tier quality control algorithms that
use historical data and machine learning based anomaly detection. Like DMME, the QC
algorithms, and those important to other parts of the pipeline, depend on access to
supplementary data for analysis and improvement, ultimately resulting in support of downstream
decisions that have broad implications for the health of the earth system itself.

Both of the DTE users described in this example do related yet obviously different work in very
different contexts, and both have different viewpoints in terms of decision support, but it is fairly
obvious that each may benefit to their own ends from automated access to each other's data for
improving their own models, quality control, predictions, products, and reasoning.

To enable this data sharing, we provide a DTE-FS compliant DTE-F to both users, and they thus
become full participants of the resultant user-driven DTE. Each user selects or constructs a
DTE-F compliant API to interact with the system. When initializing as users of the DTE, they are
loaded as known entities, choosing their defaults about access rights and methods of acquiring
access tokens. Once users of the system, they each describe their individual process through
the API as a set of tasks based on the traditional pipeline, where each task is described in terms
of its workflow and output structure.

The output structures for each task are constructed according to each user's own unique
understanding of their own data, but with each backed by the DTE-F implemented reference
model, the output from each task is semantically interoperable and discoverable by both
themselves and other users, both preserving lineage analysis and promoting process, method,
and/or ontological reuse. Every output is intrinsically described in terms of schematic and
semantic representation, preservation information, potentially customized access rights over the
default values, and packaging, and each gets a searchable and findable description. Tasks are
purpose specific and linked in order, with input tasks describing the process of retrieving or
accepting data, identity tasks describing individual entities, transformation tasks describing what
shape the transformation produced data in, and how to understand it.

When tasks are linked to the process, the process is similarly given a description on
accessibility and packaging, and when complete, it is deployed. The deployment validates the
process in terms of task linkages, and if valid, makes the process, process tasks, and
archetypes used to define process task outputs available for search as structure. This is
accomplished by other automated DTE users that listen for new process deployments. One of
these users looks for new archetypes, one of them looks for new processes, and both run NLP
driven processes that store and maintain a hierarchical knowledge of methods for drilling down
and accessing a particular federated DTE user's data.

Upon deployment, both user processes are active, able to handle event driven data from
sources specified by individual processes, or alternatively they may begin to go out and retrieve
data in an input task with custom configuration. As the processes work, they begin executing
computational logic according to workflow, and persisting archetype-derived data entities, which
are now available for interoperable search and discovery.

One or both users might then decide to augment their own process, and to that end, search the
DTE-F API for archetypes with labeled fields they are interested in, processes that might have
description they are interested in, or templates that might have context they are interested in. In
the NOAA user’s case, once it discovers the output template from a given data producing task
owned and performed by DMME contains rainfall data for a specific area, in a specific format, it
can understand how to acquire this data, and creates a new version of its own existing process
that listens for triggers on completion of the DMME rainfall data task, assesses it in terms of its
own online historical accuracy score model of that metric, and if it is satisfactory, integrates it
into its own precipitation QC model, which it now generates and delivers multiple versions of, for
selection and use by other external DTE users based on reference to the DMME identified
rainfall system property.

Reference Implementation

The NOAA National Centers for Environmental Information (NCEI), part of the National
Environmental Satellite, Data, and Information Service (NESDIS), is responsible for archival of
all of NOAA funded data in a way that is consistent with National Archives and Records
Administration (NARA) guidelines, and NOAA access to research results (PARR) guidelines.
This means that NCEI must provide timely archive and broad access to data that comes from,
among other sources, nationally scoped in situ networks, polar and geosynchronous satellites,
focused research studies, ocean dives, autonomous vehicles, hurricane trackers, and more, and
deliver this data in many specified ways to internal users, national and international partners,
and the general public.

Efforts to fulfill this mission have taken on a large number of forms as the mission boundary
conditions - the technologies, standards, agencies, people, and systems - have evolved over
time. With the maturation of the cloud computing era, the method of mission fulfillment of NCEI
has changed direction yet again, and the agency is currently building NOAA’'s Next Generation
Cloud Archive (NAAS) service to meet the new implementation requirements and opportunities
afforded by this development.

Eventually, NAAS is intended to function as part of the NESDIS Common Cloud Framework
(NCCF), a holistic model based cloud computing system that is intended to function as a single
unit toward fulfilling NESDIS goals. To that end, the NCCF includes aspects of data onboarding,
product generation, ingest, and the NAAS. As the Archive and Access component, NAAS is in a
unique position relative to the NCCF in two ways.

First, it must handle all NOAA funded data. This includes, but is not limited to, satellite data,
which is historically the primary focus of NESDIS by a large amount. This necessarily means
that NAAS sees and must support, in terms of content and character, an enormous amount and
variety of data. Second, as the outgoing interface, NAAS must serve this data, to all intended
users, in all expected ways. In the modern age, this involves knowing about and supporting all
of the historically expected and held heritage formats, proprietary data repositories, custom
schemas, and narrowly understood and used products that NOAA has accrued over the life of
its mission and even the life of historical earth data record keeping, while simultaneously
supporting things like distributed format transformations, on-the-fly aggregations, and targeted
catalog platforms, including NASA's Common Metadata Repository (CMR), to keep up pace with
and stay compatible with and useful to modern machines and users.

Based on these boundary conditions, it is clear that goals of the NAAS readily fit into the DTE
model as described above in the DTE-FS. While ‘only’ the Access and Archive part of the
NCCF, as both a consumer and disseminator of all NOAA product data, the NAAS is clearly an
ideal user of a DTE, both for its own benefit and that of its intended consumers. To this end, the
design of the NCCF Archive and Access service essentially ‘trained’ the DTE-FS model against
specific NOAA user community requirements and boundary conditions, including reference
model ideals, NCCF cloud architecture guidance related to implementation on Amazon Web
Services, and governance structure.

The DTE-F developed for NCEI's use in building the NAAS is designated at the virtual Archival
Information Package (VAIP). The name itself belies one of the core choices of DTE-FS
implementation, which is the reference model used in defining the ontology to be used for
defining all system concepts through archetype, thus enabling intrinsic semantic interoperability
through a small, static, space-complete, searchable model. This reference model, the Open
Archival Information System (OAIS), is an ISO standard and stalwart pillar of archival thought,
and a space systems recommendation. While extraordinarily large if taken on the whole, the
only parts of the OAIS that were found to be needed for implementation to support a full
DTE-FS implementation were a rather small collection. In fact, the NAAS took only the OAIS
concepts of the information object, the information package, and the access aid, to construct its
core ontology.

This ontology was then built and validated in OWL and RDF using visual tools including
Protege, WebProtege, and VocBench. Figures 1 and 2 provide a WebProtege visualization of
the primary concepts of concern on which all other concepts may be implemented as
archetypes.

| Data I Representation

[Structure Representation | I Other Representation I

hasData addsMeaningTo

hasStructure | Semantic Representation | hasOtherRepresentation

hasSemantics
|
Information Object

Figure 1: the primary vAIP building block, the Information Object. Important to understanding
this concept is that the data in an information object is the primary focus, held as ‘just bits’, and
must be entirely qualified through its representation network, which is similarly made of
information objects. This allows construction of rich semantic networks that are made easily
machine-readable through SPARQL and easily machine-validatable through SHACL.

| Data | Representation
N

l Structure Representation | | Other Representation I
ﬁ-\""‘-».._
hasData ddsMeaningTo
!
hasStructure [Semantic Representation I hasOtherAepresentation
L)
— hassemantics

e
Informaticm Ob]ect

information I Package Description I

k describedBy derivedFromPackage
—— i
e e

Information Package

Figure 2 - the secondary vAIP building block, the Information Package. Note that this
ontological layer constructs a specific pattern of information objects, requiring storage of any
unit to include its content, preservation (of which there are multiple types), packaging, and
description information.

Using these core concepts, following DTE-FS requirements, other fundamental aspects of vVAIP
DTE-F were implemented as archetypes. Figure 3 illustrates what vAIP implemented to fulfill the
DTE-FS specification for a process task archetype (called step function archetype in the vAIP).

This archetype defines tasks that may be linked together in a DTE-FS Process, and it holds
reference to its workflow configuration, output structure template, and the process flow policy
(PFP).

Figure 3: A DTE-F task archetype, implemented in vAIP as a step function archetype, following
the implementation choices of AWS step functions for workflow management.

Each of the task types was also implemented in terms of structure in the vAIP ontology as a
purpose-formed pattern. Figure 4 provides an example of an identity task storage archetype of a
‘granule’ implemented in terms of the OAIS concept of an identity focused archival information
unit (only a cropped part of the archetype is displayed for compactness); Figure 5 provides an
example of a transformation archetype, implemented using the OAIS concept of a
membership-focused Archival Information Collection; and Figure 6 provides an example of an
output archetype, implemented in OAIS as a Dissemination information Package (DIP) to an
Access Aid (AA).

Granule Description Text [Dsmtv.mon License Tm] [F-Imn«| [File Format Lmkl [Fno Schema L.nkl [Chocksum v:m| |Chocksum Definition Unkl Icr-ocum
A

hasData hasData hasOata hasData

S Do oo eiin
acasMaarngTo hasStructue

haaData

presecvedBy hasStructure hasStructure

describodBy derivedFromPackage hasAccessRights hasSernantica

File hasficty

hasData

|
[Storage Archetype Specification |
A

nasContent

Storage Archetype

Figure 4: An example of a DTE-FS identity archetype, modeled in the vAIP as an identity
focused AlU.

IAIC Overview LinkI IFirst Namal ILast Namel IDocument I | Person] |wac OWL Standard Linkl IFOAF Ontology Link]

hasData i 3 foaf:currentProject foaf:knows hasData

AIC Overview W3C OWL Standard hasData

hasData addsMeaningTo

AIC Description hasData hasStructure FOAF Ontology

\\) hasSemantics

| Membership Description r

describedBy describedBy

describedBy derivedFromPackage AIC Member

hasData

AIC Members

hasContent
AIC Storage Archetype

Figure 5: A DTE-F transformation archetype structure, implemented in the VAIP as a
membership-focused AIC.

| Request Value | Request Protocol Spec | Response Vihue Response Protocol Spec | Sesvice Link | | Architecture Docs | laC Link | Source Code Link

Fequest | [Raspons

rcars o Oy 0 Accvs A Ao

Figure 6: A DTE-F output archetype structure, implemented in the vAIP as a delivery focused
DIP.

Importantly, these archetypes are only examples. The vAIP API both satisfies and allows other
DTE-FS requirements to be satisfied in terms of user-specific, human and machine readable,
findable and accessible, semantically interoperable, configurable, reusable, and versionable
archetypes.

In the VAIP, syntactic interoperability requirements and goals including those related to
submission of entire requests, retries, provenance, and model-based syntax, were met by
implementation of several ‘workflow’ archetypes in the AWS step functions WMS, and functional
requirements surrounding real-time data and submission were handled through their connection
to the AWS eventbridge event bus utility. The workflow archetypes themselves were stereotyped
according to the task types, and each includes automatic wrapping utility around custom
user-task code to handle automated schema matching. Figure 7 represents the input, identity,
transformation, and output workflow archetypes. As they are built in AWS Step Functions, their
modeled design exactly matches the structure of implementation itself. Note the hidden model
layer of the DTE-FS implementation used to trigger the overall process from real-time messages
about data events.

EventBridge
: il : ¥ - —

%) | AIC AA
m’ Workfl Workflow

message E

Legend D = step function archetype

= read

= predefined ste
= write D P P

D e it . = configurable step

graph = vAIP knowledge graph interaction
persistent storage = e.g. 53 or database interaction

*The preprocessor only applies to 53 ‘file’ events, Preprocessor is an automatic, static, and hidden model layer that adds corresponding object tags to file events in
\l aorder to properly route and control workflow processing for that object. Directly submitted messages must already include required tags and will skip preprocess.

NESDIS Cloud Archive Project

Figure 7: Workflow archetypes implemented in the vAIP to satisfy, from left to right (ignoring the
preprocessor), DTE-F task types of identity, transformation, and output, respectively.

Further note that functional requirements of a DTE related to syntactic interoperability and
non-functional requirements related to concurrency and composability are satisfied through the
use of the EventBridge event bus as an intermediary between each workflow. As stated
previously, validation of tasks is handled automatically based on key-value pair matching, and
may eventually be improved further through the use of Natural Language Processing (NLP)
reasoning to support semantic evaluation of workflow output to persistence input, and
persistence output to downstream task input.

Task composition in VAIP is handled through implementation of the DTE-FS concept of process
as a Data Stream Configuration, or Process Flow Policy. These policies further meet
requirements of archetype description and versioning through their use of the process flow
policy to store themselves as units within the system itself. Figure 8 illustrates composition of
the policy, while figure 9 illustrates deployment of the policy itself within the VAIP framework.

Data Stream Configuration | AIC** Workflow AIC** Workflow

Process Template Process Template

o workflow config workflow config
AlU Workflow / .
Process Template Storage Template Storage Template
workflow config % -

\ AA** Workflow AIC** Workflow

Storage Template Process Template Process Template

. workflow config

¥ v
Storage Template Storage Template

-Templates in this diagram, both
process and storage, are semi-valued
patterns derived from archetypes
(unvalued patterns). Archetypes are
{0AIS) reference-model defined,
purpose-driven schemas that enforce
universally interoperable structures
on the graph.

-Workflow configs are data-defined
specifications that configure and drive
the step function compute engine.

-Archetypes, templates, workflow
configs, and data stream configuration
definitions are all held as ‘pure data’
in the graph themselves for use as
searchable graph dimensions.

[«

*Per-configuration means that the directed workflow, in terms of nodes and
edges, at the AlU, AIC, and AA concept level, is defined by the data stream

+

ion. A data stream conffi ion defines this level of connectedness.

ing of AIC workfT
Configuration-specific. E.g. an AIC workflow might mean creation of an AIC or

and AA workflows is Doto Stream

AIC membership, an AA workflow might mean creation of an AA record or
delivery to an AA, depending on data stream configuration.

Figure 8: The DTE-FS concept of process, along with notion of versioning and access
requirements, as implemented in the vAIP as a ‘Data Stream Configuration’.

|
Create AIU
NetCDF Granule Membership Storage Template
Create _—r p— y— — e— T
AIC Template 1S0-C 0ISST
Resources ISO-C AIC
_—p T T —
Archive Data XML Collection Record Membership Storage Template
Collection DISST XML Collection Record Storage Template XML g::ﬁa:
Create llecti Membershi
AlU T . T TT Collection embership
Resources Recort Process
Granule | ©'SST NetCDF CLASS Granule oISST Membership Template
Storage Template XML Process
GIEL Collection Template
NetCDF Record
G I AlU
Step Function Config AlU Process
B Template
OISST Data Stream Configuration AlU P Templat Template
Step Function Process Archetype
Process Archetype

Figure 9: Satisfaction of the DTE-FS requirements related to machine and human accessibility
and versioning of processes within the archetype system as implemented in the vAIP.

DTE-FS schematic interoperability requirements were demonstrated as partially satisfied
through vAIP implementation of process triggering and task execution, while schematic
interoperability between task output structures is further illustrated in figure 10, which also
illustrates how identified entities within the system, defined in terms of rich contextual networks
of their own, may be made semantically available in transformation contexts.

‘-1—- OISST NetCDF

Granule
OISST NetCDF s
Packaging Granule POl "-/* MM:.MF Recor
AlU
- —‘
1
CLASS OISST NetCDF NetCDF
Granule CLASS G Controlle or:slsrnombnnllb
ule
St?rage Template Member | pagcription Template
Ar yp ace
| 1SO-C
QISST ISO-C
AlU AIC Storage AlC
Storage Archetype | Storage
Archetype] Tantrolied Archetype
Collecti Member C
Record s fnshndls £ Record Membership
Storage Dl Description Templat
Archetype =
DISST IS0 XML OISST €
Collection Record PDI Record Membership
Packaging AlU Record

Description

=" T coerter OAIS-RM

Figure 10: Visual illustration of task to task structure in terms of schematic and semantic
interoperability.

As a DTE-F based on DTE-FS, the vAIP is intended to satisfy a broader DTE. The workflow for
how this should look is illustrated in figure 11. Figures 12 and 13 illustrate how VAIP satisfies
DTE-FS requirements of the API, in terms of provision and use as a building block.

Metadata
Access Aid f e
_ . DP |

OAIS Information Model

Archive Information Archive Information

Configuration | I Units Collections : :
Ingested [~ SIP —» o Relatonships Direct or Abstract Access P DIP :
Data b : Decomplected and SRTPRR
Record Context e

Outgoing . DIP

Access Aid o Community
Warehouse

Figure 11: Concept of Operations of the vAIP as an enabler of NOAA as a DTE user.

e
H S W oo o as W

W ww N NNRMNRNRNNNNNRS B B2
N E® WU & WN SO WU e WN

33
34
35

import vaip

#Create a new NEXRAD configuration
my_nexrad_configuration = vaip.create_configuration()

#Create AIU workflows for each data type in the configuration
tarball_aiu_workflow = my_nexrad_configuration.create_aiu_workflow()
xml_file_aiu_workflow = my_nexrad_configuration.create_aiu_workflow()

#Note that in the future, we can support manual workflows with 'human-in-the-middle' activities.
my_human_workflow = my_nexrad_configuration.create_manual_aiu_workflow()

#See if we have any available AIU archetypes that might match our criteria

matching_aius = vaip.find_aius(
filters={"name": ["NEXRAD", "Granule"], "representation": ["File Link"]})

zero, there are no matching AIUs in our system with these filters
print{len{matching_aius))

#We now need to create AIU storage for each of our workflows
tarball_aiu = vaip.create_aiu()
xml_file_aiu = vaip.create_aiu()

#let's get a validation report to see what's required for our model
returns a SHACL validated map and overall status (FAIL)
validation_report = vaip.validate_aiu(tarball_aiu)

#Now let's fill in our tarball archetype with some values

packaging_info = tarball_aiu.add_packaging_info(
name="object_prefix", type=vaip.LINK)

structure_rep = packaging_info.add_structure_representation(
name="object_prefix_format", type=vaip.LINK)

semantic_rep = packaging_info.add_semantic_representation(
name="object_prefix_layout", type=vaip.LINK, structure_representation=structure_rep)

Figure 12: Screenshot of use of a space-complete API for encapsulation of DTE interoperability
for the purposes of security, usability, and sustainability.

Power Users,

Business Operators *CARI = Consolidated Archive Request Interface

(Analysts, Operators,
cientists, Managers)

NOAA / NESDIS / National Centers for Environmental Information

VAIP APl —z05—

Developers
(Direct Graph Users)

*D5-GUIs = Data Science Graphical User Interfaces
*DM-GUIs = Data Manager Graphical User Interfaces
*5Y5-Uls = System Operator User Interfaces

12

Figure 13: Notional expansive use of the VAIP API to support broader user needs in terms of
visualization tools and interfaces.

References

Communicating sequential processes - Wikipedia

Onyx Platform Information Model

Actor model - Wikipedia

ORE Specification - Abstract Data Model

PROV-DM: The PROV Data Model

Ref Model f 0 Archi E ion S (QAIS

Reflecti : | R Vert |

Semantic Sensor Network Ontology

A curated. ontology-based. large-scale knowledge graph of artificial intelligence tasks and benchmarks | Scientific
Data

A Survey on Ontology Evaluation Methods
Why openEHR is Eating Healthcare. It is just over ten years since Marc... | by Alastair Allen | Medium

Noninvasive Re-architecture of Legacy Systems
Harness - A State Testing Environment for Big Data Algorithms
TaskAPI - A Declarative Process Data Model and API for Distributed Systems

Mostly Abstract REST Structur

Simulation vs. Machine Learning - Vortarus Technologies LLC
What Is a Digital Twin? - MATLAB & Simulink
Actors and the Process Calculi: A Comparison | by Stephen BI

Architectural Frameworks, Models, and Views | The MITRE Corporation

An Introduction to Model-Based Systems Engineering (MBSE
SQALE - Wikipedia

The FAIR Data Principles - FORCE11

CARE Principles of Indigenous Data Governance

https://www.dlib.org/dlib/june06/chan/06chan.html
https://www.iso.org/obp/ui/#iso:std:iso-iec:21838:-1:ed-1:v1:en

