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I. Introduction
Although the concept of a Digital Twin and virtual simulation dates back to early work in
aerospace vehicles by NASA in the 1960’s, the DT concept has been gaining increasing popularity
in a variety of industries and areas of science as a promising platform for integrating data-driven
and mechanistic modeling with artificial intelligence (AI) [1-3]. In early 2023, the National
Academies of Sciences, Engineering, and Medicine appointed an ad-hoc committee to identify the
needs and opportunities to advance the mathematical, statistical, and computational foundations
of digital twins in applications across science, medicine, engineering, and society [4].

Among a wide range of applications, the concept of digital twin can play a particularly important 
role in modeling and simulation of the human body and its intricate subsystems. Known as a 
Human Digital Twin (HDT), this branch of digital twin research holds the potential to profoundly 
impact human society and enhance lives by enabling personalized health monitoring, improving 
the detection, screening, and prevention of adverse health conditions, and facilitating virtual testing 
and clinical trials. It is acknowledged, however, that significant research and development efforts 
are still needed to fully realize the potential of digital twins in healthcare. In this response, we 
present our vision for advancing the emerging field of HDT and propose strategies, discuss 
challenges, and make recommendations for its future applications in the scientific community. 

II. Definition of a Human Digital Twin (HDT)
In its most general form, a human digital twin (HDT) is a virtual representation of an individual
human, that can encompass real-time simulations of multiple sub-systems operating at multiple
length scales ranging from microscopic cells and molecules to tissues, organs, organ systems, and
ultimately the entire human body. In general, the biological class of digital twins share the
following basic properties [5]:

• Individualized - An HDT is highly personalized, at the level of an individual human, or a
specific genotype or phenotype.

• Interconnected - An HDT is informed by a real-time connection to a living biological system.
• Interactive - An HDT enables a real-time closed loop feedback between the physical and virtual

systems.
• Informative - In addition to the physical and virtual components, an HDT platform must also

provide a means for third-party observers to view, control, test, and interpret the behavior and
response of the virtual system.

• Impactful - An HDT can contribute significantly to better health and well-being through
continuous monitoring and analysis, early detection of potential health issues, and improved
treatment strategy.
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III. Strategies for Advancing Human Digital Twins for Better Health
In March 2022, the Digital Twins for Health (DT4H) Consortium was established, comprising a
global network of professionals and researchers with diverse domain expertise who share a
common goal of advancing HDTs [6]. Since its inception, the DT4H Consortium has
conceptualized a research cyberinfrastructure, i.e., a DT4H Gateway, to advance R&D for HDTs
by addressing the challenges faced by researchers, developers, and users and facilitating their
navigation of the HDT landscape across multiple disciplines for the first time. As shown in Figure
1, the DT4H Gateway includes five infrastructure modules: (1) computing; (2) standardizing; (3)
learning; (4) modeling; and (5) training, operating under four guiding principles: (i) collaborative
scientific teamwork; (ii) ethical and trustworthy digital twins; (iii) commitment to diversity, equity,
and inclusion; and (iv) active community involvement and partnership.

As a consortium, we have identified several fundamental strategies for advancing the field of 
human Digital Twin research. A basic summary of the strategic areas is listed below. 

III.1 Concerted Research Experience Integrated through Computing
The vision of the computing module is to provide a concerted research experience by orchestrating
a seamless integration of diverse datasets, tools, models, and computing resources to provide
researchers with an efficient and cohesive workflow management environment [7-9]. Providing
interfaces between data and AI algorithms allowing continuous model enhancements and
interfaces for comparing user data to existing models is a significant technical undertaking and a
necessity for data and model standardization. Consistent well-documented and well-preforming
application programming interfaces (APIs) will allow reproducible HDT workflows which include
a mixture of data, algorithm, model, sharing, and visualization components.

Specifically, the environment needs to manage user accounts with precision and foster a 
collaborative spirit by enabling users to work effectively in groups. Tools and datasets need to be 
managed efficiently to facilitate team science. Users should be able to write and execute code 
remotely, and user interfaces should be intuitive for users to design, track, and manage virtual 

Figure 1. Our overarching vision of advancing HDTs for better health via a DT4H Gateway. 
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experiments. Additionally, the computing environment must support collaborative scientific 
inquiries through metadata-rich virtual experiments. Adherence to metadata standards can ensure 
those experiments are FAIR (findable, accessible, interoperable, and reusable), enhancing 
collaborative scientific inquiries. Adopting industry standards on task and workflow execution, 
data management, privacy and security management is necessary to foster translation of user 
research environments with diverse backend resources. 
 
III.2 Enhancing HDT Data Standardization and Integration under an Ethical Framework 
The standardizing module focuses on providing resources, best practices, and tooling to facilitate 
data standardization and integration for HDTs, as summarized in Table 1 above. This will ensure 
the HDT data are accurate, reliable, and interoperable across different systems and platforms. 
 
Table 1. The multimodal data types used in HDTs and the potential standardization strategies. 
Multimodal data types Standardization strategies 
Electronic Health Record (EHR) data Observational Medical Outcomes Partnership (OMOP) 

Common Data Model [10] and HL7 FHIR (Fast 
Healthcare Interoperability Resources) [11] 

Mobile health data HL7 consumer mobile health application function 
framework guideline [12]; Open mHealth tools [13] 

Physiological and biomedical imaging 
data 

Digital Imaging and Communications in Medicine 
(DICOM) [14]; Hierarchical Data Format version 5 
(HDF5) [15] 

Genetic testing data (-omics) Variation Representation Specification (VRS) [16]; 
MIGS-MIMS for genomics [17]; MIAPE for 
proteomics [18]; CIMR for metabolomics [19]; 
MIAME for transcriptomics [20] 

Social Determinants of Health data Social Determinants of Health Ontology (SDoHO) [21] 
 
III.3 Establishing Advanced Machine Learning Framework for Building HDTs 
The vision of the learning module is to provide a comprehensive and advanced framework for 
building HDTs, encompassing a range of tools and methodologies to extract, augment, integrate, 
and interpret data effectively, as summarized in Table 2 below. 
 
Table 2. Various approaches to extract, augment, integrate, and interpret multimodal datasets. 
Multimodal data types Learning strategies 
Genetic/genomic data Pararead [2], COCOA [23], AIList [24], GATK’s 

FilterIntervals [25], LOLAWeb [26], DeepChrome [27] 
Imaging data and textual feature AALIM [28], large language models (LLM) [29] 
Behavior and health data Machine learning tools [30] 
Social media data Natural language processing (NLP) tools [31] 

 
Moreover, tensor fusion networks [32] and multiplexed graph neural networks [33] can be used 
for modality integration. For data visualization and interpretability, a variety of methods can be 
applied, such as AI Explainability 360 [34], Boolean Decision Rules [35], Generalized Linear Rule 
Models [36], LIME [37], SHAP [38], TED [39], t-SNE [40], PCA [41], and UMAP [42]. 
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III.4 Developing HDT Capabilities through Modeling and Simulation
The modeling and simulation module, integral to building specific HDTs, is responsible for
developing retrospective restructuring, monitoring, analytical, and predictive capabilities of HDTs
by integrating data-driven and mechanistic approaches with advanced AI technologies and data
science methods. The type of modeling employed can depend on the specific type of data being
used. Table 3 lists various data types and the corresponding modeling and simulation strategies.

Table 3. Modeling and simulation strategies for various data types and scenarios. 
Multimodal data types and scenarios Modeling and simulation strategies 
Longitudinal Data modeling and 
forecasting 

Various dynamical system models [43], including 
neural dynamical systems, neural integral-
differential equation models, RNN models, 
transformers, GNNs, diffusion models, and latent 
variable approaches  

Omics data Gene regulatory networks [44] and functional 
protein network models 

Single-cell, cell aggregates Multiphase materials models, level-set models, 
phase field models, and Cellular Potts Model (CPM) 
for modeling single-cell and cell aggregates [45] 

Organs and tissues Spatial-temporal dynamical models based on non-
equilibrium thermodynamics and network models, 
including level-set models, phase-field models, etc. 
[46] 

Multimodality data fusion Graph-based toolkits and graph neural networks [47] 
Environmental particulates and drug 
interactions 

Pharmacokinetics/Pharmacodynamics modeling 
tools [48] 

Human behavior, mental health Various temporal models for simulating norms in 
online social networks and cross-platform prediction 
and simulation [49] 

Human-environment interactions Agent-Based Models [50] 
Integration of physics-based, agent-
based, and statistical models with 
generative AI such as ChatGPT, GPT-4, 
Claude 3, and DALL-E 

Large language models (GPT-4, Claude 3, etc.), 
multimodal generative AI model based on stable 
diffusion models [51-52] 

III.5 Building a Sustainable Community Through Training and Workforce Development
Our vision for the training module is to facilitate the training of the next generation of leaders in
engineering, science, and technology to become HDT creators, builders, and users. As listed in
Table 4 above, it is imperative to build a sustainable program focusing on career development
support and mentoring across all career stages, emphasizing underrepresented and minority groups.

Table 4. Various programs to enhance training and workforce development for HDTs. 
Programs Training and workforce development strategies 
Interdisciplinary Mentoring Dual mentorship in biomedical science and AI/ML, leveraging 

online forms, PubMed knowledge graph [53], and mentorship 
databases [54] for diverse pairing and flipped mentorship 
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Recruitment and Diversity Utilizing various channels for recruitment and focusing on 
increasing diversity through lectures and mentorships by experts 
from academic partners and government organizations [55] 

Outreach and Partnership Forming partnerships with communities, industries, and 
advocate groups, offering internships, practicum opportunities, 
and HDT data and tool challenges 

Ethical and Trustworthy DT Emphasizing ethical AI algorithm and model development, data 
privacy, and security technologies 

 
IV. Specific Challenges for Human Digital Twins 
While HDTs represent a groundbreaking advancement in personalized healthcare and offer 
immense potential for improving health outcomes, realizing the full potential of HDTs in 
healthcare requires addressing several formidable challenges that span across various domains. 
 
Challenges of inherent complexities and uncertainties in human bodies: Human bodies exhibit 
significant heterogeneities at the molecular, cellular, and organ levels, resulting in substantial 
differences in biological responses among individuals. Biological processes can change over time. 
The dynamic nature of biological systems often exhibits non-linear behaviors and emergent 
properties, making it difficult to predict responses accurately. Incorporating the temporal aspect 
into an HDT is complicated, especially considering the various factors that influence human health 
over a person's lifetime, the incomplete understanding of underlying mechanisms, and often 
incomplete or limited available biological data from various sources. 
 
Challenges in advanced algorithms, computational resources, and validation: The current 
state of knowledge regarding human physiology, disease mechanisms, and treatment responses 
remains incomplete and continuously evolving. Integrating this fragmented understanding and 
theoretical frameworks into HDT models, while simultaneously accounting for inherent 
uncertainties and facilitating seamless model updates as novel insights emerge, poses a critical 
challenge that demands innovative solutions. Furthermore, HDT simulations and analyses often 
involve processing massive volumes of data and performing computationally intensive operations, 
necessitating the development of highly efficient computational algorithms and the strategic 
harnessing of high-performance computing resources to enable real-time simulations and analyses. 
Moreover, ensuring the accuracy, reliability, and robustness of HDT models and simulations is of 
paramount importance for their practical applications in healthcare settings. Developing rigorous 
validation and verification frameworks, encompassing virtual clinical trials and comparative 
studies with real-world data represents a significant challenge that requires focused efforts and 
interdisciplinary collaborations. 
 
Privacy and regulatory challenges: The wealth of personal and sensitive healthcare data 
embedded in HDTs raises significant privacy concerns, necessitating stringent measures to 
safeguard individuals' information. HDT data collection and sharing must also adhere to existing 
regulations and standards related to health data protection. This includes compliance with 
frameworks like the Health Insurance Portability and Accountability Act (HIPAA) in the United 
States or the General Data Protection Regulation (GDPR) in Europe to ensure the lawful and 
ethical use of digital twin technology in healthcare. Informed consent in the HDT context, 
particularly with continuous data collection and updates, necessitates a nuanced approach that 
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prioritizes ongoing communication, transparency, and respect for individuals' autonomy over their 
health data. Informed consent in HDT involves providing individuals with comprehensive 
information regarding the purpose, risks, benefits, and potential uses of creating a dynamic digital 
representation of their health based on personal data. Challenges arise due to the complexity of 
HDT technology, requiring efforts to ensure individuals fully grasp the implications of this 
technology. 

Security and safety challenges: The reliability of an HDT hinges on the accuracy and fidelity of 
its digital representation, which, if compromised, can lead to erroneous conclusions and potentially 
harmful consequences in fields such as healthcare and engineering. Ensuring the reliability of data 
inputs, calibration processes, and the overall model becomes crucial to maintaining the integrity 
of the HDT's predictions. Simultaneously, security-related issues pose significant ethical 
challenges, as the vast amount of personal and sensitive data incorporated into HDTs requires 
robust protection mechanisms. Unauthorized access or malicious tampering with HDT data could 
not only jeopardize individual privacy but also result in inaccurate representations and 
recommendations, potentially impacting real-world entities connected to the HDT. 

Data heterogeneity and quality challenges: One of the primary challenges of healthcare data is 
its inherent heterogeneity and varied quality. Health-related information frequently exists in 
disparate systems and diverse formats, making integration a complex task. This data, sourced from 
EHRs, wearable devices, and other digital health tools, often varies significantly in accuracy, 
completeness, and reliability. The technical intricacies involved in harmonizing this data are 
considerable, as it necessitates sophisticated methods to ensure consistent and accurate 
interpretation across different platforms and data types. Moreover, the reliability of HDT models 
in healthcare heavily relies on the quality of the underlying data. Therefore, establishing robust 
protocols for data quality assurance is crucial. These protocols must address the nuances of health 
data, ensuring that the integrated data is not only interoperable but also maintains a high standard 
of precision and validity. Such meticulous attention to data quality is essential for the successful 
implementation and effectiveness of HDT models in healthcare. 

Data representation and bias challenges: The potential for bias in healthcare data, often 
reflective of historical disparities and systemic inequities, can be perpetuated in HDTs, leading to 
unequal outcomes. If not meticulously addressed, this bias may result in disparities in healthcare 
recommendations and interventions. Furthermore, the development and utilization of AI predictive 
models within the HDT context carries the risk of encoding and amplifying existing biases present 
in the training data. Equitable access to HDT technology is another critical concern, as disparities 
in access may exacerbate existing healthcare inequalities. Ensuring that the benefits of HDTs are 
accessible across diverse populations becomes imperative to prevent the technology from 
inadvertently reinforcing societal disparities. 

V. Recommendations for Human Digital Twin Research
Addressing these challenges requires a combination of advanced computational techniques,
interdisciplinary collaboration, improved data standards, and ongoing refinement of biological
models as our understanding of human biology advances. Collaboration with relevant stakeholders,
adherence to ethical guidelines, establishment of standards for data integration, model
development, and system benchmarking, and a commitment to data privacy are crucial.
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Regulatory framework for data security and privacy: The regulatory framework for data 
security and privacy must evolve to address the unique considerations of HDT in healthcare. It 
involves collecting diverse and relevant information about individuals to create accurate and 
representative models. Potential sources include EHRs, wearable devices, genetic data, surveys, 
mobile apps, and more. It is critical to implement robust data privacy and security measures to 
protect sensitive health information and adhere to relevant regulations, such as HIPAA or GDPR, 
and obtain informed consent from individuals. Meanwhile, longitudinal data collection is 
necessary to capture changes over time. This is particularly important for understanding health 
trends, monitoring interventions, and predicting future health states. 
 
Standardization: By offering personalized insights, early disease detection, and treatment 
optimization, HDTs are capable of revolutionizing healthcare. However, there is a lack of 
standards and guidelines for modeling humans as part of the system, and data standardization is 
set to become an issue. Thus, it is important to architect data standards that can provide robust 
information to support human modeling. Additionally, a global perspective should be considered 
to allow advances in HDTs to have a worldwide impact. 
 
Ethical implications of human digital twins:  The HDT technology for personalized medicine 
may not be accessible to each individual or community, highlighting the unequal distribution of 
technology. This can cause an additional form of ‘digital divide’ among persons and populations. 
It is therefore important to ensure digital equality to advance HDTs for better health. Moreover, 
unacceptable segmentation and discrimination/injustice may be triggered by patterns identified 
across a population of HDTs. Thus, there is a need for governance mechanisms to safeguard the 
rights of individuals who own HDTs, ensure data security and privacy, and foster transparency 
and fairness of data usage, health equity, and all derived benefits at both individual and wider 
societal levels. 
 
Increase community engagement: Efforts should ensure community input in the development 
and implementation of HDTs. HDT research should promote ongoing bi-directional engagement, 
ensuring the inclusive involvement of diverse community perspectives. Some of these strategies 
include focus groups, town hall meetings, dissemination forums, and interactive digital platforms 
tailored to the different community stakeholders. Further, these forms of engagement should 
endure cultural sensitivity and inclusivity to avoid biases and ensure relevance across different 
communities and stakeholders. 
 
Funding implications of human digital twins: Funding agencies would have a significant 
amount of impact on advancing HDTs. Specifically, they can offer financial support, promote 
research prioritization, interdisciplinary collaboration, data sharing, and standards, ethical and 
regulatory frameworks, invest in educational programs and public outreach efforts, invest in the 
development of enabling technologies such as HPC and ancillary resources, help ensure that there 
is sustainable support for maintaining and updating HDTs, continuously monitor the progress and 
impact of HDT, and encourage collaboration and information sharing on a global scale. 
 
Specifically, a substantial initial investment is required to develop the necessary 
cyberinfrastructure. This includes hardware, software, and network capabilities to support 
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complex data processing and simulation tasks. Leveraging collaborative funding from various 
sources, such as government grants, private sector investments, the healthcare industry and 
academic institutions, can provide a more robust financial foundation. Ongoing operational costs, 
including maintenance of technology infrastructure, data storage, and security, require sustainable 
funding sources. This might involve subscription models, partnerships with healthcare providers, 
or government support. Investing in training programs to develop a skilled workforce capable of 
building, maintaining, and utilizing DT technology is essential. This includes funding for 
educational programs, workshops, and certification courses. Such goals can be embedded in the 
request for proposals (RFP) and broad agency announcements (BAA) as the NSF and NIH 
routinely do in their portfolio. 
 
VI. Conclusions 
The emerging HDT technology offers tremendous opportunities for personalized healthcare, 
predictive interventions, remote monitoring, and medical research advancements. It has the 
potential to revolutionize healthcare by integrating with the healthcare sector, information 
technology, AI industries, the government and private sector stakeholders. While there are still 
many obstacles and challenges in implementing human digital twins for healthcare, we envision a 
bright future for HDT with cross-disciplinary collaborations and efforts by all the stakeholders 
including the government, industry, academia, and private sectors. 
 
References 
1. Tao F, Xiao B, Qi Q, Cheng J, Ji P. Digital twin modeling. Journal of Manufacturing 

Systems. 2022;64:372-389.  
2. Pylianidis C, Osinga S, Athanasiadis IN. Introducing digital twins to agriculture. Computers 

and Electronics in Agriculture. 2021;184:105942.  
3. Fuller A, Fan Z, Day C, Barlow C. Digital twin: Enabling technologies, challenges and open 

research. IEEE access. 2020;8:108952-108971.  
4. National Academies of Science E, and Medicine. Foundational Research Gaps and Future 

Directions for Digital Twins. https://www.nationalacademies.org/our-work/foundational-
research-gaps-and-future-directions-for-digital-twins 

5. Katsoulakis E, Wang Q, Wu H, Shahriyari L, Fletcher R, Liu J, Achenie L, Liu H, Jackson P, 
Xiao Y, Syeda-Mahmood T, Tuli R, and Deng J. Digital Twins for Health: A Scoping 
Review. npj Digital Medicine, 7, 77 (2024). https://doi.org/10.1038/s41746-024-01073-0 

6. Digital Twins for Health Consortium. https://dt4h.org 
7. Advanced Cyberinfrastructure Coordination Ecosystem: Services & Support. https://access-

ci.org 
8. Partnership to Advance Throughput Computing. https://path-cc.io/ 
9. Hancock DY, Fischer J, Lowe JM, et al. Jetstream2: Accelerating cloud computing via 

Jetstream. Practice and Experience in Advanced Research Computing. 2021:1-8. 
10. OMOP Common Data Model. https://ohdsi.github.io/CommonDataModel/ 
11. Peterson KJ, Jiang G, Liu H. A corpus-driven standardization framework for encoding 

clinical problems with HL7 FHIR. J Biomed Inform. Oct 2020;110:103541. 
doi:10.1016/j.jbi.2020.103541 

12. The HL7 consumer mobile health application function framework (cMHAFF) guideline 
https://www.hl7.org/implement/standards/product_brief.cfm?product_id=476 

13. Open mHealth Tools. https://www.openmhealth.org/ 



9 

14. Mustra M, Delac K, Grgic M. Overview of the DICOM standard. IEEE; 2008:39-44.
15. Folk M, Heber G, Koziol Q, Pourmal E, Robinson D. An overview of the HDF5 technology

suite and its applications. 2011:36-47.
16. Freimuth RR, Milius RP, Murugan M, Terry M. Clinical genomic data on FHIR®: Case

studies in the development and adoption of the Genomics Reporting Implementation Guide.
Genomic Data Sharing. Elsevier; 2023:91-110.

17. Kottmann R, Gray T, Murphy S, et al. A standard MIGS/MIMS compliant XML Schema:
toward the development of the Genomic Contextual Data Markup Language (GCDML).
Omics a journal of integrative biology. 2008;12(2):115-121.

18. Taylor CF, Paton NW, Lilley KS, et al. The minimum information about a proteomics
experiment (MIAPE). Nature biotechnology. 2007;25(8):887-893.

19. Haug K, Salek RM, Steinbeck C. Global open data management in metabolomics. Current
opinion in chemical biology. 2017;36:58-63.

20. Deutsch EW, Ball CA, Berman JJ, et al. Minimum information specification for in situ
hybridization and immunohistochemistry experiments (MISFISHIE). Nature biotechnology.
2008;26(3):305-312.

21. Dang Y, Li F, Hu X, et al. Systematic Design and Evaluation of Social Determinants of
Health Ontology (SDoHO). arXiv preprint arXiv:221201941. 2022;

22. Introduction to Pararead. http://code.databio.org/pararead/
23. Lawson JT, Smith JP, Bekiranov S, Garrett-Bakelman FE, Sheffield NC. COCOA:

coordinate covariation analysis of epigenetic heterogeneity. Genome Bio. 2020;21(1):1-23.
24. Feng J, Ratan A, Sheffield NC. Augmented Interval List: a novel data structure for efficient

genomic interval search. Bioinformatics. 2019;35(23):4907-4911.
25. Van der Auwera GA, O'Connor BD. Genomics in the cloud: using Docker, GATK, and

WDL in Terra. O'Reilly Media; 2020.
26. Nagraj V, Magee NE, Sheffield NC. LOLAweb: a containerized web server for interactive

genomic locus overlap enrichment analysis. Nucleic acids research. 2018;46(W1):W194-199.
27. Singh R, Lanchantin J, Robins G, Qi Y. DeepChrome: deep-learning for predicting gene

expression from histone modifications. Bioinformatics. 2016;32(17):i639-i648.
28. Syeda-Mahmood T, Wang F, Beymer D, Amir A, Richmond M, Hashmi S. AALIM:

Multimodal mining for cardiac decision support. IEEE; 2007:209-212.
29. Shi L, Syeda-mahmood T, Baldwin T. Improving neural models for radiology report retrieval

with lexicon-based automated annotation. 2022:3457-3463.
30. Bompelli A, Wang Y, Wan R, et al. Social and behavioral determinants of health in the era of

artificial intelligence with electronic health records: A scoping review. Health Data Science.
2021;2021

31. Eichstaedt JC, Kern ML, Yaden DB, et al. Closed-and open-vocabulary approaches to text
analysis: A review, quantitative comparison, and recommendations. Psychological Methods.
2021;26(4):398.

32. Zadeh A, Chen M, Poria S, Cambria E, Morency L-P. Tensor fusion network for multimodal
sentiment analysis. arXiv preprint arXiv:170707250. 2017;

33. Fu S, Chen D, He H, et al. Clinical concept extraction: A methodology review. J Biomed
Inform. Sep 2020;109:103526. doi:10.1016/j.jbi.2020.103526

34. Arya V, Bellamy RK, Chen P-Y, et al. AI explainability 360: hands-on tutorial. 2020:696-
696.



10 

35. Dash S, Gunluk O, Wei D. Boolean decision rules via column generation. Advances in neural
information processing systems. 2018;31

36. Wei D, Dash S, Gao T, Gunluk O. Generalized linear rule models. PMLR; 2019:6687-6696.
37. Ribeiro MT, Singh S, Guestrin C. " Why should i trust you?" Explaining the predictions of

any classifier. 2016:1135-1144.
38. Lundberg SM, Lee S-I. A unified approach to interpreting model predictions. Advances in

neural information processing systems. 2017;30
39. Hind M, Wei D, Campbell M, et al. TED: Teaching AI to explain its decisions. 2019:123-

129.
40. Van der Maaten L, Hinton G. Visualizing data using t-SNE. Journal of machine learning

research. 2008;9(11)
41. Abdi H, Williams LJ. Principal component analysis. Wiley interdisciplinary reviews:

computational statistics. 2010;2(4):433-459.
42. McInnes L, Healy J, Melville J. Umap: Uniform manifold approximation and projection for

dimension reduction. arXiv preprint arXiv:180203426. 2018;
43. Hou J, Deng J, Li C, Wang Q. Tracing and forecasting metabolic indices of cancer patients

using patient-specific deep learning models. Journal of personalized medicine.
2022;12(5):742.

44. Lopes-Ramos CM, Kuijjer ML, Ogino S, et al. Gene regulatory network analysis identifies
sex-linked differences in colon cancer drug metabolism. Cancer research. 2018;78(19):5538-
5547.

45. Szabó A, Merks RM. Cellular potts modeling of tumor growth, tumor invasion, and tumor
evolution. Frontiers in oncology. 2013;3:87.

46. Hormuth DA, Jarrett AM, Feng X, Yankeelov TE. Calibrating a predictive model of tumor
growth and angiogenesis with quantitative MRI. Annals of biomedical engineering.
2019;47:1539-1551.

47. Zhou J, Cui G, Hu S, et al. Graph neural networks: A review of methods and applications. AI
open. 2020;1:57-81.

48. He H, Yuan D, Wu Y, Cao Y. Pharmacokinetics and pharmacodynamics modeling and
simulation systems to support the development and regulation of liposomal drugs.
Pharmaceutics. 2019;11(3):110.

49. Hunter DR, Goodreau SM, Handcock MS. Goodness of fit of social network models. Journal
of the american statistical association. 2008;103(481):248-258.

50. Smith ER, Conrey FR. Agent-based modeling: A new approach for theory building in social
psychology. Personality and social psychology review. 2007;11(1):87-104.

51. Salakhutdinov R. Learning deep generative models. Annual Review of Statistics and Its
Application. 2015;2:361-385.

52. Xu J, Kim S, Song M, et al. Building a PubMed knowledge graph. Scientific data.
2020;7(1):205.

53. Frei E, Stamm M, Buddeberg-Fischer B. Mentoring programs for medical students-a review
of the PubMed literature 2000-2008. BMC medical education. 2010;10:1-14.

54. Hardy TM, Hansen MJ, Bahamonde RE, Kimble-Hill AC. Insights Gained into the Use of
Individual Development Plans as a Framework for Mentoring NIH Postbaccalaureate
Research Education Program (PREP) Trainees. Journal of chemical education.
2021;99(1):417-427.




