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To whom it may concern, 
 
We are submitting a joint comment on the Networking and Information Technology Research and 
Development Request for Information on Digital Twins Research and Development Request for Information 
Document Citation: 89 FR 51554, Page 51554-51555 (2 pages), Document Number: 2024-13379.  Below are 
the authors of this document: 
 
Dr. Douglas L. Van Bossuyt, Associate Professor, Naval Postgraduate School 
Dr. Bryan Mesmer, Associate Professor, the University of Alabama at Huntsville 
Dr. Rob Cuzner, Professor, University of Wisconsin-Milwaukee 
Dr. Zhen Zeng, Assistant Professor, University of Wisconsin-Milwaukee 
Mr. Roger Cutitta, PhD Candidate, Naval Postgraduate School 
Mr. Jason Bickford, Research Director, Naval Surface Warfare Center Port Hueneme Division 
Dr. Kristen Fletcher, Faculty Associate of Research, Naval Postgraduate School 
Ms. Marina Lesse, Faculty Associate of Research, Naval Postgraduate School 
Dr. Rich Malak, Associate Professor, Texas A&M University 
Dr. Don Brutzman, Associate Professor, Naval Postgraduate School 
Dr. Daniel Selva, Associate Professor, Texas A&M University 
Dr. Giovanna Oriti, Professor, Naval Postgraduate School 
Dr. Ana Wooley, Assistant Professor, University of Alabama Huntsville 
Dr. Wei (Wayne) Chen, Assistant Professor, Texas A&M University 
Dr. Doug Allaire, Associate Professor, Texas A&M University 
Dr. Astrid Layton, Assistant Professor, Texas A&M University 
Mr. Tom Bozada, Research Scientist, CEERD-CERL US Army Corps of Engineers 
Dr. Michael Keidar, Professor, George Washington University 
Dr. Britta Hale, Associate Professor, Naval Postgraduate School 
Dr. Ron Giachetti, Professor, Naval Postgraduate School 
Dr. Howie Huang, Professor, George Washington University 
Dr. Michael Watson, President Elect, International Council on Systems Engineering; SE&I Branch Manager, 
Space Division, Leidos 
Dr. Cameron Turner, Associate Professor, Clemson University 
Dr. Gregory Mocko, Associate Professor, Clemson University 
Dr. Allison Ledford, Assistant Research Professor, Auburn University 
 
This document is approved for public dissemination. The document contains no business-proprietary or 
confidential information. Document contents may be reused by the government in the National Digital Twins 
R&D Strategic Plan and associated documents without attribution. 
      
We come from a wide swath of the federal government, academia, and industry. We believe diverse 
viewpoints and stakeholders are necessary to develop the National Digital Twins R&D Strategic Plan and to 
see the Strategic Plan through to fruition. This comment outlines our vision for 13 core topics identified in the 
RFI, and how they can be integrated into a national strategy. The Strategic Plan can be realized only through 
significant and close collaboration, and we are positioned to undertake the endeavor through a future 
National Digital Twin Center. 
 
Artificial Intelligence (AI): 
Although the role of Artificial Intelligence (AI) in the context of Digital Twins (DTs) has been recognized1 , 
there has been limited focus on how DTs can generate sufficiently large training datasets to enhance AI 
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training and testing. Specifically in military and mission scenarios, DT models can impact mission scenarios 
by accelerating the development process and reducing the time and cost required for AI training2. 

The past few years have seen the advancement of generative models (a part of the larger artificial 
intelligence domain) and their success in many domains. Although past work has shown that generative 
models can be leveraged in DTs to, for example, extract features from high-dimensional data3 and predict 
future states4, the integration of generative models to DTs is still understudied. The most important 
capability of generative models involves learning data distributions, which can be exploited to learn the 
(potentially high-dimensional) uncertainties of the physical twin's state based on sensor data (e.g., the 
geometric uncertainties of fabricated part5 or uncertainties of the physical twin’s future state given its current 
state). This will allow more robust control of the physical twin's outcomes. The challenges will be two-fold: 
1) the lack of data to train a high-fidelity generative model and to update the model in real-time and 2) the
model's generalization ability to unusual or extreme conditions.

One of the challenges of integrating different models into a Digital Ecosystem is real-time information 
retrieval from heterogeneous sources. Artificial intelligence agents (a.k.a. cognitive assistants) can assist 
the user to seamlessly and quickly retrieve information from different sources, which can be applied 
throughout the system’s lifecycle, from design6 to operations7. Question Answering (QA) systems allow for 
information retrieval from multiple data sources in natural language. However, traditional QA systems based 
on question intent classification, parameter extraction, and predefined queries and answer templates, lacks 
scalability and flexibility. Large language models (LLMs) have been recently used to significantly expand the 
capabilities of information retrieval and QA systems. LLM-based systems can now be integrated into AI 
agents to interpret natural language questions, retrieve the relevant information from an information space, 
and generate natural language answers, without the need for pre-specifying a set of known question types8. 
However, the use of LLMs has brought new challenges. First, LLM-based QA is slower than traditional QA 
systems, in part because of the latency of the request to the application programming interface (API). 
Second, organizations have expressed concerns about the security of their data; if any dialogues between 
users of the QA system and the tool go through the servers of the organization providing that API service, that 
undermines the confidential nature of the data, especially if the API service provider uses that data to train 
their models. Finally, for some applications there are challenges related to computing infrastructure 
requirements. Many of the more powerful LLMs are based on APIs that require an internet connection. Some 
models exist that can be hosted locally but they are less powerful. One can also train smaller language 
models for a particular task, but that may require access to significant computing infrastructure.   

An interesting new approach that DT enables is based on Artificial Intelligence and machine learning 
harnessing the power of plasma chemistry as a programmable intelligent material with a new concept of a 
chemical-based algorithm9. The focus of some future research will be on integration of DTs with AIto allow 
development of predictive capabilities by DTs. 

Business: Business Case Analysis: 
Despite the advantages of DT and Industry 4.0, small and medium manufacturers (SMMs) face low Industry 
4.0 readiness10 due to challenges in understanding how DTs optimize operations, enhance product 
development, and improve maintenance processes. This is compounded by a lack of business case 
analysis studies demonstrating return on investment, difficulties in identifying suitable applications, and 
issues with compatible software solutions. Furthermore, SMMs often lack clarity on where to begin, what 
steps are involved, and what resources are needed, which stalls progress and deters manufacturers from 
pursuing DT initiatives. A higher understanding of business cases for using Industry 4.0 solutions is essential 
to prepare SMMs for investing in such capabilities11. Because they are purpose-driven, a given DT must match 
the fidelity and scope of the model to the type of problem being solved. Excessive detail (fidelity), high-
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bandwidth updates (frequency), and broad boundaries (scope) add unnecessary cost and complexity, 
delaying value realization. This challenge is compounded by a lack of common definitions of DTs, their 
components, and capabilities. The DT Consortium and other bodies have invested in creating common 
definitions and reference frameworks for DT use cases. These standards must now be widely utilized, revised 
based on real-world implementations, and enhanced with complimentary tools that accelerate DT adoption. 
Research should be done to help SMMs deciding upon system boundaries, curating minimum-viable 
datasets, and making efficient choices to focus system development on the problem statement. 
Manufacturing executives need tools to evaluate whether DT is a good fit for their problem, challenge, or 
business need, while system architects need guidance on scope, frequency, and fidelity to maximize 
business value. IT/OT professionals require estimates of the labor needed before a DT system produces 
outputs to allocate resources and set expectations effectively. 
 
Traditional simulation and DT models share the same capability to replicate physical systems in virtual 
environments12, but they are fundamentally different13. Simulation is in the core of DTs leading to confusion 
and the mislabeling of simulation models as DTs and vice versa14. Unlike simulations, DTs feature continuous 
bilateral communication, sensor-based monitoring of physical system changes, and real-time decision-
making support. Research has found that a significant portion of literature claiming to present DT case 
studies fails to achieve true DT capabilities, instead presenting simulations as DTs15. Even among correctly 
built DTs, many underutilize their potential. This highlights a persistent gap between the conceptual 
understanding of DTs and their practical application. Research is needed to develop business decision-
making tools, such as decision trees, to help determine when a DT is viable for a problem or if a simulation 
model will suffice. These tools would guide the selection of the appropriate technology based on the specific 
scope and requirements of each problem. 
 
The Department of Defense (DOD) is transitioning the acquisition community for the development of new 
military systems to a digital engineering environment in which computer models and formal representations 
of the system are used to inform decisions throughout the entire life cycle of the system.  One goal is to have 
a digital thread connecting all the disparate models of the system.  Ideally, a DT would be a part of the digital 
engineering infrastructure.  Specifically, research is needed in how conceptual and detailed design models 
can be used to generate some or all of a DT.  Such an approach of integrating the development of the DT with 
the development of the system would greatly reduce costs of DT development and support verification that 
the DT represents the physical system.  Also, each additional ship, plane, tank, etc. produced by a DOD 
program tends to incorporate many engineering changes and technology upgrades which make it 
significantly different from previous systems in its class.  Research is necessary in processes and 
technologies to generate and manage serialized DTs corresponding to individual fielded systems. 
 
Data: 
Research has shown that within enterprises, over 90% of data exchanges are not governed and around 90% 
of data element exchanges lack digital connectivity16,17.  Additionally, key vessels of data such as models and 
documents are often spread across dozens or hundreds of disparate storage locations for stand-alone 
efforts.  Therefore, a primary hurdle that must be overcome for successful DT development and 
implementation is the adoption of data management best practices that enable the realization of the digital 
thread. When determining what data will be used to create the DT, it may be helpful to categorize the data as 
being related to four different phases of DT implementation: Representation, Replication, Reality, and 
Relational18. Prior to realization of the DT, it is advisable to deploy a methodology to identify disparate and 
ungoverned elements of data within the system of interest. Once the elements of data are identified, they can 
be systematically categorized as relating to the Representation, Replication, Reality, and Relational phases 
of the DT, and consequently, the digital thread will be enabled alongside the DT. 
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Ecosystem:  
For military and mission planning to make significant advances, a national Digital Twin R&D ecosystem 
must be established both of military and defense systems, and of the industrial and commercial systems that 
support them.  Mission engineering19, planning, operations and maintenance, and many other activities will 
be enhanced with better DT development and implementation20. Already, some work has pointed towards 
the effectiveness of DTs in improving outcomes for route planning21, maintenance, and etc. Further, having 
better access to data through DTs will allow for rapid fielding of new capabilities that can be achieved by 
integrating existing systems into systems of systems, and identification of capabilities gaps. 
 
The complexity of adapting to existing and future climate change impacts and reducing emissions to try to 
mitigate future effects requires a diverse R&D ecosystem to facilitate the flow of ideas and expertise toward 
relevant research and technologies. Artificial Intelligence and DTs can add to the R&D ecosystem through 
identifying and quantifying the sources and amount of emissions along with advancing environmental 
monitoring and efficient data collection and analysis22.  A DT of the climate system allows for better models 
that simultaneously produce interactive information for climate adaptation, emissions reductions and 
streamlining carbon capture processes23.  
 
DT behavior is a key element in understanding the functionality and operability of the physical system with 
the digital model. The modeling of system behavior involves the identification and use of system state 
variables in the construct and execution of the DT. State Analysis Modeling (SAM) is an emerging system 
state variable modeling approach that provides a digital representation of the system behavior in an 
interactive simulation24. SAM includes the software algorithm, hardware state machines, and mission/flight 
timelines representing the integrated system behavior in an accurate representation of the physical system. 
Operator/user input can be supported in the execution of this DT model providing interaction with the user 
input as well as software to fully encompass DT behavior of the system. This DT of the system behavior has 
been applied in a few examples and the development of the SAM DT representation is needed in multiple 
technical domains within the US industrial base. Identification of system state variables and construction of 
accurate hardware state machines is essential in the model achieving DT behavior representation. 
Operator/user interaction also requires investigation in providing both live and simulated human behavior 
interacting with the SAM. The development of this modeling concept provides a system simulation that 
encompasses a DT of the physical system behavior. 
 
International:      
Historically, military systems have struggled to balance security, standards, and proprietary equipment. As 
a result, military equipment often does not fully leverage international integration standards. The result of 
this coupled with different international languages, units of measure, and other factors can result in 
interoperability issues. The end result can drive increased costs and complexity of development, test and 
evaluation, training, and failure to maintain a shared operational picture and full transparency across 
international partners25. 
      
During system architecture, design, and initial synthesis, the development of early virtualization DT 
frameworks can provide a readily available testable solution for verifying interoperability throughout early 
phases of a system’s lifecycle. This will significantly reduce the risk that once fielded, systems will face 
integration hurdles that become more costly later. Once a system approaches low-rate production and 
begins being used to test the many diverse use cases required by international partners, the DT can offer 
significant value to low-cost early test and evaluation to allow stakeholders the ability to defer many 
requirements to later test phases resulting in significantly more risk reduction data collection and reduced 
overall total ownership costs. 
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The utility DTs offer for operations support is widely described throughout this document, but from an 
international partners perspective there is significant need for shared operational picture and maintaining 
transparency across stakeholders. When considering the operational picture, different stakeholders may 
have different assets and resources available to create international solutions to local problems. DTs that 
monitor the use of assets in the field and provide contextual awareness of functionality to those partners will 
significantly speed up response times and improve efficiencies of those operations by eliminating the need 
to regularly communicate status and request supports. In effect, a DT – Physical Asset pair allows people on 
the periphery of direct operations to act autonomously in their support to the activity. From a transparency 
perspective, there is significant value in objective quality evidence of what assets are doing. The maintenance 
of DTs and distribution of their data sets can allow international stakeholders (both allied and others) to have 
higher confidence in activities and validate assumptions. The result is allies will know that they are being 
given accurate information, and adversaries can eliminate suspicion of nefarious activities.  
      
Long Term: 
Since its inception, DT has always been intended to exist in all four phases of the product lifecycle: create, 
build, operate and sustain, and dispose. However, there is a common misconception that DTs can only be 
created once a physical product exists. This belief is understandable, given that most discussions and 
applications of DTs occur when there's a tangible product to work with. However, a DT exists from the 
beginning of a product's development and, in fact, precedes the physical product and it is a false notion to 
claim otherwise. The essence of a true DT lies in its ability to represent something that is intended to exist 
physically. A DT starts as a foundational model early in development, capturing the product concept for 
further refinement. As the project progresses, the DT incorporates design specifications and performance 
data. During operation and sustainment, it serves as a tool for real-time monitoring and optimization of the 
ongoing performance of the product. When considering the journey of a DT throughout a product's lifecycle, 
it is essential to understand its evolution and adaptability. Research is needed to show how DTs evolve with 
the product throughout its lifecycle, highlighting their adaptability and utility from conception to disposal. 
Furthermore, the value of having a DT before the physical entity exists should be illustrated. 
 
Regulatory: 
The more complex a DT, the more information it requires or produces, and the longer a DT is in operation, the 
more potential regulatory and legal challenges may exist. Developers and users of DTs must be aware of a 
variety of such issues including data ownership, causation and liability. In particular, a regulatory 
framework must consider cybersecurity, protocols for modelling risk, intellectual property, allocation of 
risk and external requirements such as responsibility for data quality and effective function26.  The risks posed 
by DTs differ depending on the nature of the DT; a regulatory regime will need to take such differences into 
account, while also facilitating the growth of sustainable DTs27.   
      
Responsible: 
The US Navy’s Smart Ship Systems Design (S3D) platform using Formal Object Classification for 
Understanding Ships (FOCUS) requires compliant data relative to a ship design such as properties and 
geometry for ship components, interconnects (i.e. shafts, piping and cables) and structures (i.e. hulls and 
bulkheads), behaviors, and simulation results with their Leading-Edge Architecture for Prototyping Ships 
(LEAPS) repository28 is an example of a responsible approach to DTs. Nothing is released into LEAPS that is 
not FOCUS-compliant. FOCUS compliance includes time stamps and pointers to relevant measured data 
from which parameters are derived. Building on the FOCUS compliance concept of including identifiers on 
ownership and intellectual property/data ownership to the already existing (or in process) traceability to 
data sources and Technical Readiness level of data is critical to having responsible, ethical DTs. 
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Standards: 
The sudden proliferation of publications on DTs could be counterproductive to the advancement of the state 
of the art in any field of application for DTs due to the lack of standardization.  The term “DT” is sometime 
used to replace the terms “modeling and simulation” and the objectives and functionalities of the published 
DTs are often unclear.  The recently published DoDI 5000.9729 clearly places DTs within the larger digital 
engineering ecosystem, providing the first, basic DOD standard on this topic.  Future standards should 
focus on the interoperability of DTs, with clear definitions of inputs and outputs, connections, 
communication, data exchange, etc.  Within a system, each subsystem or component could have a DT 
developed by different manufacturers.  Clear and detailed standards will ensure that all DTs can be 
connected together to form a larger system.  This concept is similar to what happens with power electronics-
based power distribution systems, such as microgrid or transportation power systems, where power 
converters from different manufacturers work together to form the power system.   
 
Sustainability: 
The manufacturing industry consumes significant energy and raw materials globally. Often, locally inefficient 
decisions, such as using excess packing material, are made to simplify the overall distribution system. 
Logistics chains, material usage, and product design processes are optimized for business needs rather than 
sustainability, with little focus on end-of-life considerations, re-use, recycling, or circularity during the initial 
design and business model development stages. DTs can integrate cross-domain information to support 
more informed local decisions. For example, using less packing material for a product shipped locally versus 
across the country. Research should highlight how the holistic system view provided by DTs can reduce 
waste, increase efficiency, and support circular economies. 
 
The development of DTs – and any Artificial Intelligence technology that is developed to address climate 
change – must consider the life cycle emissions of the DT. Without that, the tool that is expected to help 
model, monitor or reduce impacts is adding to emissions and exacerbating climate change in the process. It 
is critical that DT prioritizes energy demand reduction first and energy-efficiency second. Reducing energy 
demand over the life of the DT not only reduces future climate impacts but also models such opportunities 
for other technologies. Simultaneously, a DT can be used to model improvements in future technologies and 
extend the life cycle of products through predictive maintenance thus driving sustainability30.  
 
DTs can be designed with energy efficiency as a design objective; the virtual twin continuously collects and 
processes data from the physical twin and can provide feedback to the user about energy consumption and 
potential energy savings, thus influencing user habits.  Further, the DT could take action to reduce energy 
consumption, for example during the time in which the physical twin is on standby.  
 
Additional energy savings could be obtained with DT to reduce maintenance events, as previously stated, 
through prognostics and predictive maintenance, to replace scheduled maintenance. However, DTs 
inherently increase energy consumption, due to the parallel operation of control systems, particularly if 
Artificial Intelligence is implemented.  Guidelines and standards for use of AI should be provided to avoid 
abuse, which could drive energy consumption with no obvious return on investment.  In other words, not all 
DTs must have extraordinary processing capabilities to be able to run AI algorithms which are energy-hungry.  
Designing DTs with sustainability in mind is imperative from the start.  
 
Trustworthy: 
Security in the context of DTs applies to (1) modeling of the physical system components in the DT so as to 
elucidate cybersecurity issues, (2) security of the DT system infrastructure, and (3) security of the interaction 
between the DT and physical system and other external components including other DTs as a system of 
systems of DTs (SoSDT), covering information, updates, controls, and changes that are transmitted among 
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these systems. The authenticity of data and reliability of the DT or SoSDT are thus contingent on networking 
security. Bitencourt et al.31 have identified two primary perspectives of trustworthiness for the DT: 1) trust in 
the DT’s information and that information has not been tampered with32 and 2) trust from the user that the 
DT’s information is correct to support decision-making33. 
 
Developing secure and trustworthy DTs presents some unique challenges and opportunities. As DTs grow 
in complexity, it is essential to ensure all the interactions across different components within the DT, as well 
as between the DT and the modeled physical systems, are secure. Furthermore, if the DT enables a real-
time, accurate modeling of the relationships within the physical system, this can unveil hidden 
vulnerabilities and attacks that would otherwise go undetected. Therefore, it is imperative for the DT to 
capture and understand these important relationships for a better situational awareness of the complex, 
dynamic, and highly interconnected environments that the DT represents. A promising solution to meet these 
demands is the adoption of a knowledge graph approach, which offers a robust and efficient security 
strategy for DTs34. This approach employs graph data structures that are made up of nodes (entities) and 
edges (relationships) and can utilize a variety of techniques, from conventional graph algorithms to cutting-
edge machine learning and Artificial Intelligence models, such as graph neural networks. In the event of a 
security incident, the graph methods can help analyze the dependency within the system, trace the steps of 
an attacker, and mitigate the risks and damages. 
 
Developing a secure and trustworthy DTs system infrastructure could be substantially enhanced by 
adopting threat modeling approaches. Threat modeling is a critical component throughout a software 
product development process and plays an important role in ensuring software security. The analytical 
process of threat modeling examines the system’s architecture and design to identify and mitigate security 
vulnerabilities35. The analysis of threat modeling not only helps in crafting robust security measures 
specifically designed for the system’s needs but also ensures a security-focused mindset throughout the DT 
system design, leading to a more secure and resilient DT system infrastructure. 
 
The implementation and operation of DT system infrastructure require seamless integration with multiple 
system components and coordination across various operational platforms. Such integration of diverse 
systems can introduce numerous vulnerabilities, posing significant challenges for timely mitigation in such 
an interconnected environment. Adopting risk-based vulnerability management36 approaches can 
enhance the secure implementation and operation of DT system infrastructure by providing effective and 
efficient vulnerability management across the integrated DT system. Risk-based vulnerability management 
approaches patch vulnerabilities more efficiently than the traditional one-for-all approach, especially when 
remediation resources are limited and may provide a more comprehensive understanding of vulnerabilities 
and associated risks for DT system infrastructure in the interconnected environment. 
      
Given the vulnerabilities of networked-focused cybersecurity and the benefits of data-centric security, 
focusing on application layer security requirements is essential in this regard. Namely, it may not be within 
scope to ensure full and adequate network protections suitable to DT and SoSDT needs, but it is possible to 
institute standards for cryptographic controls on application layer protocol protections that are uniquely 
suited to the needs of the DT and SoSDT environment. Promising approaches in this area include continuous 
key agreement protocols such as the Messaging Layer Security (MLS) protocol37 that offers asynchronous 
application layer security support with end-to-end encryption38.  
 
Additionally, adequate control and management of key infrastructure for DT and SoSDT use is essential. 
Given historical issues, vulnerabilities, and exploit with standard certificate use in Internet of Things, work on 
development and widespread actualization of DTs should look at Certificate Transparency and Key 
Transparency as promising solution areas for long-term protections against DT system and component 
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impersonation (both internally and externally). Such approaches support a zero-trust approach and can offer 
solutions for complex systems39.  
 
Verification, Validation, and Uncertainty Quantification (VVUQ): 
As the use of DTs becomes more widespread across the product life-cycle there is a need for formal methods 
to support Verification, Validation, Uncertainty Quantification and Calibration and Certification. A recent 
systematic literature review on the verification and validation of DTs in manufacturing found a lack clear 
definition for the verification and validation of DTs31. Additionally, very few academic works claiming to 
create DTs reported that the DTs had been verified and validated31. Moreover, there is a need to track the 
changes and life-cycle of the DT through a digital ecosystem. DTs may be used in the early stage of design to 
support design decisions of future systems, often denoted as simulation-based design. Conversely, DTs may 
be used during deployment and usage to monitor the operation and health of the systems. This range of use 
cases provides a unique opportunity to develop a digital ecosystem of DT development and usage.       
 
An example of DT usage throughout the life of a system is the design and development of an autonomous 
tracked vehicle. A simulation model of a tracked vehicle was developed to support early-stage conceptual 
design exploration. The models were developed based on existing models of wheeled vehicle and first 
principles. This digital asset was developed and subsequently used to make certain decisions about the 
design and related physical asset. A physical representation of the system was developed as a test rig that 
was closely mapped to the simulation model. The physical system was exercised through a series of planned 
experiments and data was synchronized across the digital and physical assets. Based on the DT, a deeper 
understanding of the physics, the use-case, and modeling assumptions was developed, and the simulation 
models was refined resulting in a validated DT. Subsequently, the designed system, as vetted in the test rig 
and the associated simulation model, were integrated to the full-scale vehicle and used for autonomous 
driving.  The full-scale vehicle was then tested and synchronized with a full-scale DT. The example highlights 
several key challenges in DT development including the lifespan of the digital and physical asset, linking the 
DT to increasingly detailed design decisions, capturing the stream of data between the digital and the 
physical world.  
 
There are challenges associated with DT validation and a conceptual framework is needed that addresses 
modeling realism, data uncertainty, system dynamics, use case alignment, and reporting of invalid models. 
Dahmen and colleagues40 proposed a testbed for validation and verification of DTs through three 
components: 1) DT representations, 2) simulation approach, and 3) the virtual testbed. The testbed must be 
structured to capture a modular architecture of the physical system and the associated simulation models.  
Key areas of interest that represent significant research and educational challenges within DT include: 1) 
characterizing simulation model fidelity, 2) coordinating and synchronizing physical system data with 
predictive simulation models, 3) developing formal approaches for capturing uncertainty quantification and 
mathematical models of fidelity, 4) creating threads that capture the traceability of the virtual and physical 
assets, 5) guidance on level of model fidelity and the mapping to a lower fidelity physical asset, 6) creation of 
approaches for generalizing DT relationships and extending them to yet-realized systems, and 7) identify 
approaches for simulation model development, text and data formalization, and the thread between the 
digital and the physical representation, essentially creating a formal approach for capture the devolutionary 
development of DTs.  DT must be useful and trustworthy to support the lifecycle of complex systems.  
 
Workforce: 
Digital twin workforce development has implications across several national interests including defense, 
energy, manufacturing, and infrastructure. There is an opportunity to enhance existing engineering programs 
at individual institutions through a national testbed and training resource set. Significant challenges 
associated with DT development often exist because of limited access to models and data across the life-
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cycle of the systems and the limited complexity of systems commonly found in traditional academic 
institutions. To address these challenges, a testbed is needed that consists of digital representations and 
data that capture both the simulation and physical space. These assets will be curated for complex systems 
that may include such systems as autonomous ground vehicles, wind turbines, electric vehicle powertrains, 
microgrids, manufacturing plants, and industrial HVAC systems. The curated DTs will enable training and 
education modules to be developed at scale and complexity of real systems while not impacting the 
operation of the physical systems. The future workforce prepared for DTs will span several domains, thus it 
is imperative to create opportunities for workforce development that targets deep expertise as well as 
systems-thinking and integration skills.   
 
In addition to curated sets of data, the testbed must be highly dependent on working with software providers 
within the CAD, product life-cycle management (PLM), and digital thread space. Universities often lack the 
infrastructure to deploy complex software systems so mutually beneficial relationships with software 
solutions providers must be leveraged and established to enable the future workforce to access and use 
tools that are often accessible within industry and government. Such examples include the use of systems 
modeling approaches (i.e., SysML) and PLM tools to support digital assets associated with DTs41. There are 
numerous opportunities to establish a shared resource across institutions to scale learning and research 
opportunities across partner institutions and companies. 
 
Additionally, integrating cybersecurity training into the DT workforce development program will equip 
system developers and operators with the necessary skills to manage cyber incidents related to network and 
data-centric security. This training includes hands-on cybersecurity laboratory exercises that replicate real-
world attack and defense scenarios. By participating in such training, the DT workforce will enhance their 
proactive thinking about cyber risks and improve their ability to apply effective mitigation techniques during 
DT system operations, thereby bolstering their capacity to protect digital twin environments. 
Training is a pervasive critical component in the fielding and sustainment of any system, and training pipeline 
establishment is costly. Leveraging or modifying DTs that are designed to emulate physical system behavior 
allows a low-cost, scalable, and geographically dispersed training system. If disconnected from physical 
assets then the operational concept is a virtual twin or a simulation environment for training, but if live 
streams from assets undergoing test and evaluation, demonstrations, or low-rate fielding will enable 
classroom environments to participate in dynamic live events, increasing the variability and depth offered 
over traditional training environments.  
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