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1 Introduction: Ecosystem — Mathematical, Statistical, and Computational
Foundations

The success of modern digital twins is highly dependent on innovations in computational and ap-
plied mathematics, jointly with advancements in computer science, high-performance computing
(HPC), machine learning (ML), and artificial intelligence (Al), that can enable simulation, pre-
diction, inference, and decision-making for digital twins. While predictive or decision-making
capabilities in digital twins may exist, this is currently an active area of research [1, 2, 3]. Hence,
continuous data assimilation and model calibration, as well as predictive or decision-making ca-
pabilities in digital twins, are not necessarily mature or fully integrated with traditional simulation
methods. Thus, at present, digital twins are not utilized at their full potential. Fundamental re-
search needed to achieve the goal of practical development and adoption of such predictive digital
twins includes [2, 4, 5]:
* Mathematical methods that allow for unified frameworks for probabilistic modeling, pro-
cessing, and analysis of data from a wide range of data distributions,
* Scalable and portable high-fidelity simulation algorithms and software libraries,
* Efficient surrogate models to enable fast real-time simulations to support decision making,
* Methods that enable uncertainty quantification (UQ)
* Methods for validation & verification (VV) of software, algorithms, models, and predictions,
* Methods to support processing/fusion of data from diverse sources, e.g., sensor measure-
ments, images, video, and outputs from experiments/simulations,
* Integrated workflows and frameworks to support seamless data ingestion, model calibration,
control, and decision making,
* Visualization techniques and other tools to facilitate integration of and support for the human-
in-the-loop component of digital twins.
Furthermore, mechanisms that inform a digital twin user (human expert or Al agent) of the ex-
pected level of accuracy of the digital twin’s simulations or predictive answers, and analogous
feedback from the user to the digital twin, are essential to realizing the goal of continuous cou-
pling/integration between the digital and physical twins. Such an ecosystem is depicted in Figure
1. In the next sections we expand upon some of the aforementioned aspects and research needs.
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A Digital Twin (DT) comprised of simulation
models, along with mathematical techniques to
enable inference and other predictive tasks.
Computer science methods support data
integration and orchestration of computational
workflows. Data fed into the DT allows for
continuous data assimilation and model
calibration. Data-informed predictions,
validation and verification, and decision-making
capabilities are thus enabled.
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Figure 1: Exemplar digital twin ecosystem

2 Predictive Modeling and Simulation

As illustrated in Figure 1, methods from computational and applied mathematics are central to digi-
tal twins (DTs). The success of modern, predictive DTs is thus highly dependent on advancements
in computational and applied mathematics that can enable simulation, data assimilation, inverse
problem solution, prediction, inference, and decision-making for DTs [2, 4, 5]. Also essential
is integration of such methods with computer science techniques for workflow orchestration and
frameworks that support seamless processing of data from diverse sources.

A hierarchy of models for simulating phenomena associated with the physical twin is one core
component of a DT’s mathematical ecosystem. The collection of models may include both deter-
ministic and stochastic models and should offer various degrees of fidelity and levels of required
computing resources so as to allow for a range of needs, from real-time or interactive processing to
execution of non-real-time simulation workflows. The models can be (a) mechanistic, such as those
governed by (systems of) ordinary/differential equations or differential algebraic equations, and
should include high-fidelity models and their surrogates of lower levels of fidelity, but which are
also less computationally demanding, (b) purely data-driven, such as machine learning (ML), arti-
ficial intelligence (Al), or other statistical models, and (c) hybrid mechanistic — ML/Al/statistical
models. Via judicious algorithmic choices, surrogate (mechanistic/ML/AI) models can be used to-
gether with (or in lieu of) high-fidelity models in order to reduce computing costs, while retaining
acceptable levels of accuracy in the results [6, 7].
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Probabilistic and statistical methods, modeling frameworks accounting for both additive (i.e.,
probabilistic) measures of uncertainty as well as for non-additive ones (i.e., imprecise probabili-
ties), and other inference enabling techniques [8, 9, 10, 6, 11, 12, 1, 13, 14, 3, 15, 16] are another
class of methods essential for predictive DTs. These include methods that allow for unified frame-
works for generative/probabilistic modeling and analysis/assimilation of data from a wide range of
distributions, Gaussian and non-Gaussian alike, such as those grounded on the theory and appli-
cation of optimal measure transport. Equally important are data assimilation techniques as well as
methods that enable uncertainty quantification (UQ) and validation & verification (VV) for the as-
sessment of (a) models, (b) simulation of quantities of interest, and (c) predictions resulting from
DTs. In conjunction with the aforementioned simulation capabilities, as well as with computer
science methods for workflow coordination and data management, they provide core capabilities
to enable predictive modeling, simulation, and decision making for DTs.

3 Long-Term Research Needs for Computing

To support digital twins’ diverse use scenarios - from real-time monitoring and control, to offline
design optimizations of the physical systems - there is a need to provide the computational readi-
ness through the integration and application of modern advanced computing methodologies. The
essential components of a responsive digital twin would require the scale-appropriate modeling
and simulation approaches and fast, real-time, inference and prediction based on the data streams
captured by the digital twin, all of which require considerable computational resources.

However, not all the computational requirements can be met through the large-scale process-
ing at traditional data centers and supercomputing facilities, as the overhead of transferring the
data into or out of these centralized facilities may be too large for certain digital twin applica-
tions. Edge computing devices and other novel computing architectures may be needed to support
digital twins with low-latency requirements. Research and development is needed on the perfor-
mance, programmability, and energy efficiency of new hardware architectures for compute, storage
and data transferring fabrics to support digital twin deployments. In particular, user-friendly and
portable programming models need to be developed to ensure the efficient utilization of the new
architectures. Software tools, including performance analysis, monitoring and benchmarking, de-
bugging frameworks and workflow middleware will need to be developed or adapted from existing
ones to support the unique requirements of digital twin applications.

4 Sustainable and Extensible Software Ecosystem

The advancement and adoption of digital twins in sciences, engineering, and healthcare necessi-
tates the development of a sustainable and extensible software framework. The framework should
identify crosscutting creational design patterns and provide base classes for data storage, data
refinement, system components, computational models, machine learning methods, and visualiza-
tion. It should seamlessly combine the aforementioned components with workflow orchestration
technologies for efficient execution on HPC machines as well as allow for the bidirectional inter-
action with a human-in-the-loop.

Thus, a unified software framework encompassing all software needs for a digital twin is an
outstanding challenge. This framework must be modular, extensible, portable, and user-friendly to
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enable widespread adoption by the domain specialists in various applications. Currently, several
such frameworks from the industry as well as research labs are undergoing development [17, 18].
The existing tools provide mechanism for asynchronous multi-host execution; however, they lack
the interface to workflow scheduling, and execution tools on HPC machines [19, 20, 21]. More-
over, a successful digital twin must scale on the world-class extreme computing platforms which
emphasizes performance and energy consideration of each individual component. Such a frame-
work should be built around performance portable programming models [22, 23, 24, 25] to enable
utilization of the HPC machines with minimal human effort for software redevelopment.

The digital twins rely on integrating heterogeneous computing components such as AI/ML
models with HPC simulations. Currently, most scalable physics-based models are primarily de-
veloped in high-performance computing languages like C++. In contrast, the data-driven methods
largely rely on Python frameworks such as PyTorch/TensorFlow/JAX. There is also an imperative
need of integrating libraries that interface statistical models for uncertainty quantification [26, 27].
Digital twins require load-balancing algorithms to interact with high-performance computing re-
sources, monitoring, logging, and recovery mechanism, and a lightweight 3D rendering for a real-
time interactive visualization. The software landscape is complex which makes the integration
quite challenging even if several excellent components exist. The adaptation of digital twins into
different applications relies on a low entry barrier software framework. This framework should
act as a portable and easy-to-use abstraction layer that unifies the various components of a digital
twin.

5 Visualization

The development of digital twins (DTs) offers a viable opportunity to leverage human expertise
and intuition to guide experimentation design and processes. From the perspective of visualization,
such innovative DTs must render realistic physical systems and sensor data, support human inter-
actions with the systems and capture that in real-time, so that generating intervention strategies can
be autonomous or via human-in-the-loop. This revolutionary transformation requires orchestrating
state-of-the-art visualization, Al, and HPC techniques.

There are three major visualization tasks for DTs [28]: 1) monitor and analyze the data from
the physical assets to identify important events and trends in various visualization forms; 2) display
simulations that are crucial to identify improvement opportunities and optimize the performance
of physical assets and systems, allowing users to explore scenarios in real time, test alternatives,
and design more efficient solutions; and 3) generate predictive maintenance alerts, highlighting
potential issues before they become critical so that proactive actions can be taken to improve the
reliability and efficiency of their equipment.

To realize the digital twin through visualization, there are three different techniques: 1) render-
ing a virtual 3-D representation (such as using NVIDIA’s Omniverse [29]) and allowing users to
interactively explore the virtual scenarios that might not be possible with physical systems; 2) situ-
ated visualization [30] using augmented reality to overlay 3-D renderings with computer-generated
imagery directly in their physical locations; and 3) virtual reality supporting human-physical sys-
tem interaction with gaze, head, and hand movements with haptic feedback.

The opportunities for enhancing current visualization techniques for DTs include several di-
rections. First, efficient digitization techniques are required to provide high visual fidelity in ap-
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pearance of the virtual environments with realistic human-system interactions. Even from limited
images, it requires to photorealistically digitize complex physical environments. The challenge
is to reserve the underlying physical principles or feedback realism of human-environment in-
teraction, which can limit the applications for capturing natural and accurate human activities in
scientific experiments. Second, it is essential to develop methods for effectively presenting the data
to adapt seamlessly to various experimental conditions. A typical 3D scene visualization system is
limited to pre-captured images. Once the experimental conditions vary, the regeneration triggers
the need of full-blown experiments, image capture, 3D reconstruction, and rendering. It remains a
challenge to bypass the process and result in a significantly faster and more interactive experience.
Third, a new approach is needed to understand the rationale behind the decisions made by DT and
increase assurance for humans to trust DT’s findings [31]. This will facilitate humans-in-the-loop
fashion enabled by adding a human cognitive dimension to DT’s dynamic data-driven modelling
and simulation, by involving human cognition at different simulation stages or in various formats.
Finally, capturing human interaction with DTs will be vital for understanding and streamlining the
experiment process, allowing us to identify key aspects to observe; improve information synthe-
sis; and, ultimately, optimize decision-making. Currently, the information typically flows from
the physical system to the users [32], but the feedback mechanism going the other way remains
manual and tedious.

6 Artificial Intelligence (AI) Foundation Models

Foundational models (FMs) have revolutionized Al by providing a unified approach to handling
different data modalities and performing a variety of tasks. In the field of digital twin research,
FMs have great potential to enhance the development, accuracy, and usefulness of digital twins
across multiple scientific fields. For example, in materials science, combining FMs with digital
twins enables researchers to simulate and predict material behavior under different conditions,
facilitating the design and testing of new materials with desirable properties. This approach can
be equally applied to biomedical research, climate science, and nuclear physics, where accurate
simulation and predictive capabilities are equally important.
The benefits of combining foundational models with digital twins include:

* Strong predictive capabilities: Foundational models trained on broad and diverse datasets
demonstrate strong predictive capabilities. In the scientific field, this means more accurate
simulations of complex systems under a variety of conditions, facilitating the creation of
highly predictive digital twins. These enhanced predictions can inform design, testing, and
optimization processes, reducing the need for expensive and time-consuming physical ex-
periments.

* Multimodal data integration: Digital twins require the integration of data from a variety
of sources, such as sensor data, experimental results, and theoretical models. Foundational
models excel at handling multimodal data, allowing for seamless integration and interpreta-
tion of diverse data sets. This capability ensures that the digital twin is always updated with
the latest data, maintaining its relevance and accuracy.

* Accelerate scientific discovery: Foundational models can greatly accelerate the discovery
process by providing insights into the complex behavior and properties of the system being
studied. By incorporating these insights into the digital twin, researchers can simulate and
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predict how new designs or materials will perform under different conditions. This acceler-
ation of discovery is critical to solving pressing challenges in areas such as energy storage,
environmental sustainability, and advanced manufacturing.
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