

ODENOS: An SDN Framework for Heterogeneous Network Orchestration

Kazuya Suzuki Cloud System Research Laboratories, NEC Corporation Jul/15/2015

This research is executed under a part of a "Research and Development of Network Virtualization Technology" program commissioned by the Ministry of Internal Affairs and Communications.

At the time of a firmware update,

I want to move data flows on the device to
another path.

As communication quality gets wrong, I want to use another path.

Network Visualization and Control

End-to-End Network Visualization and Control

Network Virtualization

VLAN

Layer2 Network (VLAN 10) Layer2 Network (VLAN 20) Layer2 Network (VLAN 30)

Layer2 Network

VXLAN

Multi-Layer

Multi-Vendor X Virtualization

Multi-Domain

Relationship

A Mass of Specifications makes applications

→ Complicated, and

→ Non-Reuseable.

An SDN Framework for Heterogeneous Networks

ODENOS

Abstraction

Abstract Model

Network Model

Network component

Stores modeled objects

Driver component

Application component

LearningSwitch Application

Controlling Single OpenFlow switch

Controlling Multiple OpenFlow switches

Controlling Multiple OpenFlow switches

Converting modeled objects

How to convert?

Aggregator

Topology

1. Aggregates multiple nodes to single node.

Topology

Aggregates multiple nodes to single node.
 Copies outer ports
 Discards inner ports

Flow

Reuse of Applications

Logic Components

Network

Application

Driver

Logic

Network Visualization for Heterogeneous Networks

Overlay Control Network Viewer Slicer Aggregator **OpenFlow Control** LinkLayerizer LearningSwitch LearningSwitch LearningSwitch Transport Control Slicer **Federator** LinkLayerizer Aggregator LinkLayerizer **Federator** PTN **VXIan** OpenFlow1.0 OpenFlow1.3 OPT driver driver driver driver drier OF1.3 OF1.0 ~ PTN VXLAN WDM TDM

Cause Analysis by Drilled-Down Operation

Cause Analysis by Drilled-Down Operation

Multi-layer and Multi-domain Network Control

raitilayer ratif calculation

Conclusion

- ODENOS: An SDN framework for heterogeneous network orchestration
 - Possible to build reusable network orchestrator easily
 - Flexible end-to-end control of multi-layer and multidomain network
- Open source software, distributed on GitHub now!
 - Support Java and python
 - https://github.com/o3project/odenos

APPENDIX

Creating Components

```
$ curl http://localhost:10080/systemmanager/components -X POST -d
    '{"type": "LearningSwitch", "id": "learning_sw1"}'
$ curl http://localhost:10080/systemmanager/components -X POST -d
    '{"type": "NetworkComponent", "id": "network1"}'
$ curl http://localhost:10080/systemmanager/components -X POST -d
    '{"type": "OpenFlowDriver", "id": "driver1"}'
```

LearningSwitch

Connecting Components

```
$ curl http://localhost:10080/systemmanager/components -X POST -d
    '{"type": "LearningSwitch", "id": "learning_sw1"}'
$ curl http://localhost:10080/systemmanager/components -X POST -d
    '{"type": "NetworkComponent", "id": "network1"}'
$ curl http://localhost:10080/systemmanager/components -X POST -d
    '{"type": "OpenFlowDriver", "id": "driver1"}'
```

```
$ curl http://localhost:10080/systemmanager/connections -X POST -d
    '{"connection_type": "original",
        "source_id": "learning_sw1", "destination_id":"network1"}'

$ curl http://localhost:10080/systemmanager/connections -X POST -d
    '{"connection_type": "original",
        "source_id": "driver1", "destination_id":"network1"}'
```


implementation of LearningSwitch Application

```
class LearningSwitch extends Logic {
 network.addInPacketAddedListener(
    new InPacketAddedListener() {
      public void processEvent(final InPacketAdded msg) {
        // Receives a packet
        InPacket pkt = network.getPacket(msg.id());
        // MAC Learning
        inPort = fdb.put(pkt.srcMacAddr(), pkt.inPort());
        // If the MAC has been learned, creates Flow
        outPort = fdb.get(pkt.dstMacAddr());
        if (outPort != NULL) {
          network.putFlow(
            Util.createL2Flow(pkt, outPort));
        // Sends a packet
        network.postOutPacket(
          Util.createOutPacket(pkt, outPort));
      }});
```


Slicer: A Logic Component

Slicer: A Logic Component

Q. Can I expand models or operators?

A. Yes, it's possible.

Network Model

Aggregator

Inheritance

Advanced Aggregator

Overrides necessary methods

Network