
Response to NITRD RFI 
White Paper to Inform the Five-Year Strategic Plan 

Soft Real-time Computing in Cyber-Physical Systems 
 

 
It is common for cyber-physical systems to be designed to support real-time processing, i.e., the 
system is required to respond to external conditions within a bounded amount of time.  
Historically such systems are designed to incorporate strict hard real-time (HRT) scheduling 
policies that guarantee the system will respond to each external event before a prescribed 
deadline elapses.  In essence, failure to meet the guarantee means that the system has failed, 
usually resulting in the system being restarted (all ongoing tasks managed by the cyber-physical 
system are halted, then restarted).  In certain cases, (e.g., mission-critical task processing) HRT 
policies are required to avoid loss of human life or failure of a large, expensive system (e.g., an 
unmanned space mission).  A slightly relaxed variant uses the same admission tests and 
technology as strict HRT systems, but simply kills a job that overruns its deadline, and then 
continues operation (without restarting the system).1  It is quite difficult to design pure HRT 
systems, since systems every possible execution path of the code must have bounded latency; the 
presence of multiple tasks can cause unexpected delays due to secondary activities of other tasks 
(e.g., I/O) or synchronization.   

By 1990, researchers realized that many real-time applications would be acceptable even if 
they occasionally failed to meet the traditional HRT assurances – people began to build real-time 
system using soft real-time (SRT) policies.  There are many approaches to implementing SRT 
policies, e.g., many depend on the way that a job is managed if it misses its deadline, i.e., there is 
no generally accepted policy for what the system should do in this case.  SRT is widely used for 
tasks such as audio/video streaming tasks (including application domains such as security or 
observation video and digital voice communication over a network), reading sensor data (such as 
temperature monitoring), controlling actuators (such as redirecting a tracking telescope).  
Depending on the exact nature of the application software, SRT systems can support high 
confidence cyber-physical systems at far less cost; in some cases satisfactory SRT systems can be 
built when it is infeasible to build a pure HRT system.  In SRT systems, different facets of HRT 
execution are relaxed; for example: jobs in a task may be permitted to overrun their deadline by a 
fixed amount of time; pre specified percentage of jobs in a task may be permitted to miss their 
deadlines, such that the system minimizes the amount of time that the collection of software tasks 
misses their respective deadlines; job may be scheduled so that on average, a software tasks does 
not exceed a bound on the resources it uses (although in any given short period of time it may 
exceed that bound); jobs may be delayed for an entire task phase; etc. 

SRT methodology is greatly influenced by HRT methodology, typically sharing the same 
assumptions, early principles, and proven approaches for HRT systems.  For example, early HRT 
schedulers often used rate monotonic (RM) scheduling policies since they satisfy well-known 
bounds for admission and scheduling that were published in 1973, and since RM was widely used 
in HRT system in the next two decades. The earliest deadline first (EDF) scheduling approach 
was an early competitor with RM, and has certain desirable properties in SRT systems (e.g., it can 
have better processor utilization than RM); however in early kernel scheduler technology, it was 
more difficult to implement than RM.  EDF schedulers have been shown to have certain 

                                                 
1 Real-time workload is typically specified as a collection of tasks, each of which is executed as a series of 
jobs.  Thus a task is often periodic, with one job executing in each period of the task.  Each job is specified 
with an a priori service time and deadline. 

The opinions and positions in the white papers and comments posted on this web site are those of the submitters only and do not necessarily represent those of the Federal government, 
the NITRD program and its participating agencies, or the National Coordination Office.



advantages in SRT system, yet it is sometimes difficult to publish SRT research, or to obtain 
funding for a grant proposal, if it depends on EDF scheduling. 

Along the same lines, SRT system applications are typically designed under the assumption 
that all software tasks are implemented as well-informed, well-intentioned HRT style programs 
that, e.g., would not attempt to make one statement of resource need to the system, but then either 
naively or covertly far exceed that stated need.2  For example, in SRT systems that use slack time 
scheduling techniques, the scheduler is likely to ignore the possibility that a task could effectively 
launch a denial of service attack on the real-time scheduler simply by greatly understating the 
service time (earning high admission and scheduling priority, but using much greater amounts of 
resources if they are available).  This greatly influences the breadth, complexity, and availability 
of application software for SRT systems; each SRT system typically uses its own specialized set 
of applications rather than drawing from an open pool of application programs. 

The essence of this input statement is that SRT systems are an engineering reality for most 
cyber-physical systems, but that SRT systems and software technology could provide far more 
useful support to practical cyber-physical systems than is currently possible using the existing 
hybrid theoretic foundations derived from classic HRT systems.  

I imagine a design environment in which SRT software is required to state its resource 
requirements a priori, but in which cyber-physical system applications can be built using modern 
software techniques and constraints.  Designers should be able to easily choose a SRT (or hybrid 
HRT/SRT) system policy based on pure SRT criteria rather than as softening of HRT; if the 
particular cyber-physical system requires strict HRT management, then it is should be built using 
the classic HRT principles.  But if the cyber-physical system can be built with favorable cost-
reliability tradeoffs or alternatively infrastructure (such as EDF scheduling), the design 
environment should support a spectrum of policies that enable the designer to relax certain 
policies while maintaining other, and have a clear understanding of the implications of such 
policy changes.   

I imagine a real-time based design environment in which the cyber-physical system designer 
can incorporate a much more diverse set of applications from diverse software providers while 
still be able to make the selected assurances about the real-time behavior of the system.  Success 
in this area would greatly increase the amount and quality of software that could be used in cyber-
physical systems. 

It is very difficult to “reset” an entire discipline, such as soft real-time computing, by 
reexamining basic principles, since many results in the area rely on assumptions built into the 
logical design environment.  However, modern cyber-physical systems are being held back by the 
aging set of assumptions that were developed for hard real-time systems, and by the creation of 
sound SRT methodology through the “sprawl” of HRT methodology.  In other cases, the 
technology is limited by principles that are simply accepted as “the way to do things,” even 
though technology has evolved (or could evolve) to accommodate better approaches.  An effort to 
reexamine and update the base assumptions cannot possibly be done by any single researcher, or 
even a single funding agency; it is a movement that can only be by an agency such as NITRD. 
 

                                                 
2 HRT systems rely on each job’s service time being specified as its worst case execution time, which 
causes the scheduler to operate using the most conservative admission and scheduling approach.  SRT 
systems typically depend on the applications to make more aggressive service estimates, but ones that 
approximate the WCET, or perhaps the average job execution time for all jobs in a task. 

The opinions and positions in the white papers and comments posted on this web site are those of the submitters only and do not necessarily represent those of the Federal government, 
the NITRD program and its participating agencies, or the National Coordination Office.




