
HECURA: The Server-Push I/O Architecture 
for High-End Computing 

Xian-He Sun
William Gropp, Rajeev Thakur

Illinois Institute of Technology
Argonne National Laboratory

sun@iit.edu

August 21, 2006 HECURA



Data Access: the last mile
• Parallel I/O does not work well 

for complex non-contiguous 
access 

• Improving the performance of 
small I/O requests is a necessity

• Cache and Prefetching- fetch the 
data before the demands for it

• Limitation of Existing 
Prefetching
– Conservative and limited to static 

prediction strategies
– No prediction strategy on when to 

prefetch
– Only works for simple access 

patterns with locality



Our Solution: File Access Server (FAS)

• Prefetch Engine (PFE)
– Prefetch predictor (What)
– Request generator (When)

• File Management Engine
– Data Propeller: Issues the prefetch 

instructions
– Pushes the data from disk to FAS cache 

and pushes data from FAS cache to 
client-side disk cache. 

• The server pro-actively “pushes” data in time
• Push: data is sent before the client’s I/O request
• In time: data arrives the destination within a window of time

• Use of adaptive and advanced prediction algorithms

File Management Engine 
 
 

Data Prefetch Engine 
 
 

PD 
Prefetch 
Predictor 

Request 
Generator 

Data Propeller PR 

Data 

I/O requests 
from client Prefetch Strategy 

Selector 

Pattern 
Detection 
Manager FAP 

PS 

Disk 

 
FAS 

Memory 

PS 
Data to/from 
client memory

Disk 

PS 

…



• Pattern Detection Manager: collects the history of 
past I/O access patterns 

• Prefetch Strategy Selector: adaptively selects an 
appropriate method to predict future accesses

• Prefetch predictor: decides what data to fetch
• Request generator: decides when to fetch the data 
• Data propeller: carries the prefetching and pushes the 

data into the appropriate disk cache. 
• If the prefetching fails, the file memory engine 

handles the page fault as traditional file servers.

FAS: Functionality



Challenge: What data to push?
• Multi-dimension

– location of data, the amount of data, the mode of accessing 
data, and strides

– Time between any two accesses, between successive 
accesses to a specific data block

• Aggressive Prefetching
– Overhead to predict the future accesses is no longer a issue
– New aggressive methods to predict irregular data accesses

• Adapt a prefetch strategy based on the data access pattern 
• Reduce prediction time by using hints provided by 

compiler and application/user



Challenge: When to Fetch
Three factors
• Time to predict the future accesses

– Based on the chosen prefetching method
• Data transfer latency

– I/O access delay model
• Time till next I/O cache miss

– Data access model
• Overlapping the network latency by increasing the prefetch

distance
• Adapting the prefetch distance based on the network latency 

variation



Challenge: Replacement Policies

• Existing methods
– LRU (“recency” ) 
– ARC (Adaptive Replacement Cache) (“recency” and 

“frequency” ) 
• Prediction-based Adaptive Replacement (PAR)

– A victim data block is selected by ARC policy
– Verify if the selected victim is in the predicted list
– If yes, select another one via ARC 

• Optimize collective I/O: 
– Detection and prediction algorithms
– User hint



Simulation Results: Memory Caching

Potential of DMS prefetching - Hitrate

0
10
20
30
40
50
60
70
80
90

100

Copy 2-D transpose 2-D
multiplication

struct
accesses

Pointer chasing

L1
 H

itr
at

e 
%

Base case Strided prefetching DMS prefetching

Modified Simplescalar Simulator



Simulation Results:– File accesses

File access - Page hit rate

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

100.00

128 512 1024 2048 4096 8192

offset (bytes)

hi
t r

at
e 

%

Base case Strided prefetching FAS prefetching



Research Plan

• Develop File Access Server
– Design and develop the Pattern Detection Manager, Pattern 

Detection Manager, Prefetch Predictor and Request Generator, 
novel prediction based replacement policies, Data Propeller 

– Testing of correctness and improving efficiency 

• Validate the benefits of FAS at parallel file system level 
– Integrate FAS into parallel file systems such as PVFS 
– Collective I/O of the MPI specification. 
– I/O intensive applications 

• Education plan
– Mentor, teaching, cultivate collaborative spirit



Conclusion

• The Push-based FAS is new and has many advantages 
(over client-directed prefetching)
– Dedicated computer power, fully supported OS, collective info, 

not lost in the I/O layers, full control, in time

• A strong team
– Experience and long collaboration history 

• A challenge task with a great potential

Grateful 
to the NSF/DOE HECURA support


